Fermentation: an Unreliable Seed Treatment for Bacterial Fruit Blotch of Watermelon

Plant Disease ◽  
2021 ◽  
Author(s):  
Yixin Ge ◽  
Lan Luo ◽  
Liming Xia ◽  
Xue Luo ◽  
Hongkai Bi ◽  
...  

Acidovorax citrulli is a seed-borne pathogen that causes bacterial fruit blotch (BFB), a global threat to watermelon production. Treating watermelon seeds to eliminate A. citrulli is a critical component of BFB management and several strategies have been evaluated to mitigate the impact of the disease. In China, watermelon seed producers routinely incubate seeds in watermelon juice (fermentation) to reduce the risk of seed infection by A. citrulli and seedling transmission of BFB. However, there has been limited effort to evaluate the efficacy of fermentation in mitigating A. citrulli seed infection. The current study first showed that fermented watermelon fruit juice could inhibit A. citrulli population growth, and further demonstrated that the low pH conditions, not the dynamic of temperature, generated during the fermentation process might play a major role in inhibition of growth of A. citrulli and could induce the viable but non-culturable (VBNC) state in A. citrulli. We developed an effective method that was based on PMA-PCR to detect viable A. citrulli cells under low pH conditions or in fermented watermelon fruit juice. We also provided evidence that VBNC A. citrulli cells induced by fermented watermelon fruit juice could not be resuscitated and did not retain their virulence on watermelon seedlings. However, VBNC A. citrulli cells could be resuscitated in LB medium. Based on these observations, we conclude that fermentation in watermelon fruit juice may not be an effective seed treatment for BFB as it may increase the seed infection by A. citrulli.

2018 ◽  
Author(s):  
Facheng Ye ◽  
Hana Jurikova ◽  
Lucia Angiolini ◽  
Uwe Brand ◽  
Gaia Crippa ◽  
...  

Abstract. Throughout the last few decades and in the near future CO2–induced ocean acidification is potentially a big threat to marine calcite-shelled animals (e.g., brachiopods, bivalves, corals and gastropods). Despite the great number of studies focusing on the effects of acidification on shell growth, metabolism, shell dissolution and shell repair, the consequences on biomineral formation remain poorly understood, and only few studies addressed contemporarily the impact of acidification on shell microstructure and geochemistry. In this study, a detailed microstructure and stable isotope geochemistry investigation was performed on nine adult brachiopod specimens of Magellania venosa (Dixon, 1789), grown in the natural environment as well as in controlled culturing experiments at different pH conditions (ranging 7.35 to 8.15 ± 0.05) over different time intervals (214 to 335 days). Details of shell microstructural features, such as thickness of the primary layer, density and size of endopunctae and morphology of the basic structural unit of the secondary layer were analysed using scanning electron microscopy (SEM). Stable isotope compositions (δ13C and δ18O) were tested from the secondary shell layer along shell ontogenetic increments in both dorsal and ventral valves. Based on our comprehensive dataset, we observed that, under low pH conditions, M. venosa produced a more organic-rich shell with higher density of and larger endopunctae, and smaller secondary layer fibres, when subjected to about one year of culturing. Also, increasingly negative δ13C and δ18O values are recorded by the shell produced during culturing and are related to the CO2–source in the culture setup. Both the microstructural changes and the stable isotope results are similar to observations on brachiopods from the fossil record and strongly support the value of brachiopods as robust archives of proxies for studying ocean acidification events in the geologic past.


2019 ◽  
Vol 86 (4) ◽  
Author(s):  
Daniela Wetzel ◽  
Shonna M. McBride

ABSTRACT Clostridioides difficile is a pathogenic bacterium that infects the human colon to cause diarrheal disease. Growth of the bacterium is known to be dependent on certain bile acids, oxygen levels, and nutrient availability in the intestine, but how the environmental pH can influence C. difficile is mostly unknown. Previous studies indicated that C. difficile modulates the intestinal pH, and prospective cohort studies have found a strong association between a more alkaline fecal pH and C. difficile infection. Based on these data, we hypothesized that C. difficile physiology can be affected by various pH conditions. In this study, we investigated the impact of a range of pH conditions on C. difficile to assess potential effects on growth, sporulation, motility, and toxin production in the strains 630Δerm and R20291. We observed pH-dependent differences in sporulation rate, spore morphology, and viability. Sporulation frequency was lowest under acidic conditions, and differences in cell morphology were apparent at low pH. In alkaline environments, C. difficile sporulation was greater for strain 630Δerm, whereas R20291 produced relatively high levels of spores in a broad range of pH conditions. Rapid changes in pH during exponential growth impacted sporulation similarly among the strains. Furthermore, we observed an increase in C. difficile motility with increases in pH, and strain-dependent differences in toxin production under acidic conditions. The data demonstrate that pH is an important parameter that affects C. difficile physiology and may reveal relevant insights into the growth and dissemination of this pathogen. IMPORTANCE Clostridioides difficile is an anaerobic bacterium that causes gastrointestinal disease. C. difficile forms dormant spores which can survive harsh environmental conditions, allowing their spread to new hosts. In this study, we determine how intestinally relevant pH conditions impact C. difficile physiology in the two divergent strains, 630Δerm and R20291. Our data demonstrate that low pH conditions reduce C. difficile growth, sporulation, and motility. However, toxin production and spore morphology were differentially impacted in the two strains at low pH. In addition, we observed that alkaline environments reduce C. difficile growth, but increase cell motility. When pH was adjusted rapidly during growth, we observed similar impacts on both strains. This study provides new insights into the phenotypic diversity of C. difficile grown under diverse pH conditions present in the intestinal tract, and demonstrates similarities and differences in the pH responses of different C. difficile isolates.


2019 ◽  
Vol 16 (2) ◽  
pp. 617-642 ◽  
Author(s):  
Facheng Ye ◽  
Hana Jurikova ◽  
Lucia Angiolini ◽  
Uwe Brand ◽  
Gaia Crippa ◽  
...  

Abstract. In the last few decades and in the near future CO2-induced ocean acidification is potentially a big threat to marine calcite-shelled animals (e.g. brachiopods, bivalves, corals and gastropods). Despite the great number of studies focusing on the effects of acidification on shell growth, metabolism, shell dissolution and shell repair, the consequences for biomineral formation remain poorly understood. Only a few studies have addressed the impact of ocean acidification on shell microstructure and geochemistry. In this study, a detailed microstructure and stable isotope geochemistry investigation was performed on nine adult brachiopod specimens of Magellania venosa (Dixon, 1789). These were grown in the natural environment as well as in controlled culturing experiments under different pH conditions (ranging from 7.35 to 8.15±0.05) over different time intervals (214 to 335 days). Details of shell microstructural features, such as thickness of the primary layer, density and size of endopunctae and morphology of the basic structural unit of the secondary layer were analysed using scanning electron microscopy. Stable isotope compositions (δ13C and δ18O) were tested from the secondary shell layer along shell ontogenetic increments in both dorsal and ventral valves. Based on our comprehensive dataset, we observed that, under low-pH conditions, M. venosa produced a more organic-rich shell with higher density of and larger endopunctae, and smaller secondary layer fibres. Also, increasingly negative δ13C and δ18O values are recorded by the shell produced during culturing and are related to the CO2 source in the culture set-up. Both the microstructural changes and the stable isotope results are similar to observations on brachiopods from the fossil record and strongly support the value of brachiopods as robust archives of proxies for studying ocean acidification events in the geologic past.


2019 ◽  
Author(s):  
Daniela Wetzel ◽  
Shonna M. McBride

ABSTRACTClostridioides difficile is a pathogenic bacterium that infects the human colon to cause diarrheal disease. Growth of the bacterium is known to be dependent on certain bile acids, oxygen levels and nutrient availability in the intestine, but how the environmental pH can influence C. difficile is mostly unknown. Previous studies indicated that C. difficile modulates the intestinal pH, and prospective cohort studies have found a strong association between a more alkaline fecal pH and C. difficile infection. Based on these data we hypothesized that C. difficile physiology can be affected by various pH conditions. In this study, we investigated the impact of a range of pH conditions on C. difficile to assess potential effects on growth, sporulation, motility and toxin production in the strains 630∆erm and R20291. We observed pH-dependent differences in sporulation rate, spore morphology and viability. Sporulation frequency was lowest under acidic conditions, and differences in cell morphology were apparent at low pH. In alkaline environments, C. difficile sporulation was greater for strain 630∆erm, whereas R20291 produced relatively high levels of spores in a broad range of pH conditions. Rapid changes in pH during exponential growth impacted sporulation similarly among the strains. Furthermore, we observed an increase in C. difficile motility with increases in pH, and strain-dependent differences in toxin formation under acidic conditions. The data demonstrate that pH is an important parameter that affects C. difficile physiology and may reveal relevant insights into the growth and dissemination of this pathogen.IMPORTANCEClostridioides difficile is an anaerobic bacterium that causes gastrointestinal disease. C. difficile forms dormant spores, which can survive harsh environmental conditions, allowing their spread to new hosts. In this study, we determine how intestinally relevant pH conditions impact C. difficile physiology in the two divergent strains, 630∆erm and R20291. Our data demonstrate that low pH conditions reduce C. difficile growth, sporulation, and motility. However, toxin formation and spore morphology are differentially impacted in the strains at low pH. In addition, we observed that alkaline environments reduced C. difficile growth, but increased cell motility. When pH was adjusted rapidly during growth, we observed similar impacts on both strains. This study provides new insights into the phenotypic diversity of C. difficile grown under the diverse pH conditions present in the intestinal tract, and demonstrates similarities and differences in the pH responses of different C. difficile isolates.


2021 ◽  
pp. 106648072110098
Author(s):  
Carla Sílvia Fernandes ◽  
Bruno Magalhães ◽  
Sílvia Silva ◽  
Beatriz Edra

The COVID-19 pandemic represents a global threat and crisis situation, and its wide-reaching impact has also affected marital satisfaction. Dysfunction of the marital system puts the survival of the family unit at risk. This research aimed to determine the level of marital satisfaction of Portuguese families during the social lockdown and the association between the variables under study. A descriptive, exploratory study was conducted. During the social lockdown, 276 people of Portuguese nationality and residing in Portugal were recruited using nonprobabilistic convenience sampling. Marital satisfaction in the pandemic phase showed low values that may be associated with the social, economic, and political context experienced by the pandemic situation. Future research must be carried out in order to identify, prevent, and intervene in situations of violence. In addition, future research should explore not only marital satisfaction during the current pandemic but a more systemic assessment of marital relations during crises, expanding the impact of marital satisfaction in family functioning.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Kendall A. Johnson ◽  
Clive H. Bock ◽  
Phillip M. Brannen

Abstract Background Phony peach disease (PPD) is caused by the plant pathogenic bacterium Xylella fastidiosa subsp. multiplex (Xfm). Historically, the disease has caused severe yield loss in Georgia and elsewhere in the southeastern United States, with millions of PPD trees being removed from peach orchards over the last century. The disease remains a production constraint, and management options are few. Limited research has been conducted on PPD since the 1980s, but the advent of new technologies offers the opportunity for new, foundational research to form a basis for informed management of PPD in the U.S. Furthermore, considering the global threat of Xylella to many plant species, preventing import of Xfm to other regions, particularly where peach is grown, should be considered an important phytosanitary endeavor. Main topics We review PPD, its history and impact on peach production, and the eradication efforts that were conducted for 42 years. Additionally, we review the current knowledge of the pathogen, Xfm, and how that knowledge relates to our understanding of the peach—Xylella pathosystem, including the epidemiology of the disease and consideration of the vectors. Methods used to detect the pathogen in peach are discussed, and ramifications of detection in relation to management and control of PPD are considered. Control options for PPD are limited. Our current knowledge of the pathogen diversity and disease epidemiology are described, and based on this, some potential areas for future research are also considered. Conclusion There is a lack of recent foundational research on PPD and the associated strain of Xfm. More research is needed to reduce the impact of this pathogen on peach production in the southeastern U.S., and, should it spread internationally, wherever peaches are grown.


2021 ◽  
Vol 9 (1) ◽  
pp. 194
Author(s):  
Nathan E. Wideman ◽  
James D. Oliver ◽  
Philip Glen Crandall ◽  
Nathan A. Jarvis

The detection, enumeration, and virulence potential of viable but non-culturable (VBNC) pathogens continues to be a topic of discussion. While there is a lack of definitive evidence that VBNC Listeria monocytogenes (Lm) pose a public health risk, recent studies suggest that Lm in its VBNC state remains virulent. VBNC bacteria cannot be enumerated by traditional plating methods, so the results from routine Lm testing may not demonstrate a sample’s true hazard to public health. We suggest that supplementing routine Lm testing methods with methods designed to enumerate VBNC cells may more accurately represent the true level of risk. This review summarizes five methods for enumerating VNBC Lm: Live/Dead BacLightTM staining, ethidium monoazide and propidium monoazide-stained real-time polymerase chain reaction (EMA- and PMA-PCR), direct viable count (DVC), 5-cyano-2,3-ditolyl tetrazolium chloride-4′,6-diamidino-2-phenylindole (CTC-DAPI) double staining, and carboxy-fluorescein diacetate (CDFA) staining. Of these five supplementary methods, the Live/Dead BacLightTM staining and CFDA-DVC staining currently appear to be the most accurate for VBNC Lm enumeration. In addition, the impact of the VBNC state on the virulence of Lm is reviewed. Widespread use of these supplemental methods would provide supporting data to identify the conditions under which Lm can revert from its VBNC state into an actively multiplying state and help identify the environmental triggers that can cause Lm to become virulent. Highlights: Rationale for testing for all viable Listeria (Lm) is presented. Routine environmental sampling and plating methods may miss viable Lm cells. An overview and comparison of available VBNC testing methods is given. There is a need for resuscitation techniques to recover Lm from VBNC. A review of testing results for post VBNC virulence is compared


2017 ◽  
Vol 65 (1) ◽  
pp. 50 ◽  
Author(s):  
Muhammad Yousuf Ali ◽  
Ana Pavasovic ◽  
Peter B. Mather ◽  
Peter J. Prentis

Carbonic anhydrase (CA), Na+/K+-ATPase (NKA) and Vacuolar-type H+-ATPase (HAT) play vital roles in osmoregulation and pH balance in decapod crustaceans. As variable pH levels have a significant impact on the physiology of crustaceans, it is crucial to understand the mechanisms by which an animal maintains its internal pH. We examined expression patterns of cytoplasmic (CAc) and membrane-associated form (CAg) of CA, NKA α subunit and HAT subunit a in gills of freshwater crayfish, Cherax quadricarinatus, at three pH levels – 6.2, 7.2 (control) and 8.2 – over 24 h. Expression levels of CAc were significantly increased at low pH and decreased at high pH conditions 24 h after transfer. Expression increased at low pH after 12 h, and reached its maximum level by 24 h. CAg showed a significant increase in expression at 6 h after transfer at low pH. Expression of NKA significantly increased at 6 h after transfer to pH 6.2 and remained elevated for up to 24 h. Expression for HAT and NKA showed similar patterns, where expression significantly increased 6 h after transfer to low pH and remained significantly elevated throughout the experiment. Overall, CAc, CAg, NKA and HAT gene expression is induced at low pH conditions in freshwater crayfish.


Author(s):  
Mandy Rauschner ◽  
Luisa Lange ◽  
Thea Hüsing ◽  
Sarah Reime ◽  
Alexander Nolze ◽  
...  

Abstract Background The low extracellular pH (pHe) of tumors resulting from glycolytic metabolism is a stress factor for the cells independent from concomitant hypoxia. The aim of the study was to analyze the impact of acidic pHe on gene expression on mRNA and protein level in two experimental tumor lines in vitro and in vivo and were compared to hypoxic conditions as well as combined acidosis+hypoxia. Methods Gene expression was analyzed in AT1 prostate and Walker-256 mammary carcinoma of the rat by Next Generation Sequencing (NGS), qPCR and Western blot. In addition, the impact of acidosis on tumor cell migration, adhesion, proliferation, cell death and mitochondrial activity was analyzed. Results NGS analyses revealed that 147 genes were uniformly regulated in both cell lines (in vitro) and 79 genes in both experimental tumors after 24 h at low pH. A subset of 25 genes was re-evaluated by qPCR and Western blot. Low pH consistently upregulated Aox1, Gls2, Gstp1, Ikbke, Per3, Pink1, Tlr5, Txnip, Ypel3 or downregulated Acat2, Brip1, Clspn, Dnajc25, Ercc6l, Mmd, Rif1, Zmpste24 whereas hypoxia alone led to a downregulation of most of the genes. Direct incubation at low pH reduced tumor cell adhesion whereas acidic pre-incubation increased the adhesive potential. In both tumor lines acidosis induced a G1-arrest (in vivo) of the cell cycle and a strong increase in necrotic cell death (but not in apoptosis). The mitochondrial O2 consumption increased gradually with decreasing pH. Conclusions These data show that acidic pHe in tumors plays an important role for gene expression independently from hypoxia. In parallel, acidosis modulates functional properties of tumors relevant for their malignant potential and which might be the result of pH-dependent gene expression.


Sign in / Sign up

Export Citation Format

Share Document