scholarly journals Distribution of Glut1 Glucose Transporters in Different Brain Structures Compared to Glucose Utilization and Capillary Density of Adult Rat Brains

1997 ◽  
Vol 17 (2) ◽  
pp. 204-209 ◽  
Author(s):  
Karin Zeller ◽  
Sylvia Rahner-Welsch ◽  
Wolfgang Kuschinsky

Glut1 is a specific transporter system that mediates glucose transfer across the blood–brain barrier (BBB). Although the main location of Glut1 is in the capillary endothelium of the brain, its local distribution in different brain regions is not as well defined. In the present investigation, the local pattern of Glut1 distribution was determined in 13 brain structures using an immunoautoradiographic method developed for this purpose. A polyclonal antibody directed against the C-terminal amino acid sequence of Glut1 was applied to cryosections of rat brains. A secondary antibody was added that had been coupled to [35S]. Results show a heterogeneous distribution of Glut1 in the brain with activities of [35S] ranging from 65% below to 15% above the mean. White matter activity was lower than gray matter activity. For comparison, capillary sections were counted in corresponding cryosections by indirect immunofluorescence using fibronectin antibodies. In addition, local cerebral glucose utilization (LCGU) was analyzed in identical brain structures of conscious rats by the quantitative autoradiographic 2-deoxyglucose method. Significant correlations were found between Glut1 density and either LCGU or capillary density. Results indicate a tight coupling of Glut1 transporter density and capillary density to the LCGU of different BBB structures in adult rats.

1983 ◽  
Vol 3 (2) ◽  
pp. 254-256 ◽  
Author(s):  
Jill E. Cremer ◽  
Malcolm P. Seville

Measurements of red cell volume, plasma volume, and tissue haematocrit (Hct) were made in 14 brain regions in adult rats using 51Cr-tagged red cells and 125I-labeled human serum albumin. The mean large vessel (systemic artery) Hct was 41.8, total body Hct was 35.3, and of the brain regions, the lowest value (septal nucleus) was 25.91 and the highest (visual cortex) was 32.05. The lowest blood volume was 6.29 μl g−1 (caudate putamen) and the highest was 14.44 μl g−1 (inferior colliculus). There was a significant difference between regions in both blood volume and tissue blood Hct. When brain regions were ranked in order of blood volume, this did not coincide with the order for blood flow.


2021 ◽  
pp. 153537022110568
Author(s):  
Natalia V Bobkova ◽  
Daria Y Zhdanova ◽  
Natalia V Belosludtseva ◽  
Nikita V Penkov ◽  
Galina D Mironova

Here, we found that functionally active mitochondria isolated from the brain of NMRI donor mice and administrated intranasally to recipient mice penetrated the brain structures in a dose-dependent manner. The injected mitochondria labeled with the MitoTracker Red localized in different brain regions, including the neocortex and hippocampus, which are responsible for memory and affected by degeneration in patients with Alzheimer's disease. In behavioral experiments, intranasal microinjections of brain mitochondria of native NMRI mice improved spatial memory in the olfactory bulbectomized (OBX) mice with Alzheimer’s type degeneration. Control OBX mice demonstrated loss of spatial memory tested in the Morris water maze. Immunocytochemical analysis revealed that allogeneic mitochondria colocalized with the markers of astrocytes and neurons in hippocampal cell culture. The results suggest that a non-invasive route intranasal administration of mitochondria may be a promising approach to the treatment of neurodegenerative diseases characterized, like Alzheimer's disease, by mitochondrial dysfunction.


1995 ◽  
Vol 79 (1) ◽  
pp. 136-140 ◽  
Author(s):  
S. I. Harik ◽  
W. D. Lust ◽  
S. C. Jones ◽  
K. L. Lauro ◽  
S. Pundik ◽  
...  

Hypobaric hypoxia at one-half atmospheric pressure for 3 wk was reported to increase the brain capillary density and glucose transport at the blood-brain barrier in the adult rat. We examined the metabolic concomitants of these alterations in rats subjected to the same hypoxic insult. Hypoxic rats increased brain glucose and lactate concentrations and decreased brain glycogen. However, hypoxia had no significant effects on regional brain levels of ATP and phosphocreatine or on intracellular pH, indicating successful adaptation to the hypoxic insult. 2-Deoxyglucose studies showed that hypoxia increased the regional metabolic rate for glucose by 10–40%. These results indicate increased glycolysis in the hypoxic rat brain, which probably underlies the increased density of glucose transporters in brain microvessels and the increased blood-to-brain glucose influx in hypoxia.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1721 ◽  
Author(s):  
Cezary Grochowski ◽  
Eliza Blicharska ◽  
Jacek Bogucki ◽  
Jędrzej Proch ◽  
Aleksandra Mierzwińska ◽  
...  

Introduction: Alcohol overuse may be related to increased aluminum (Al) exposure, the brain accumulation of which contributes to dementia. However, some reports indicate that silicon (Si) may have a protective role over Al-induced toxicity. Still, no study has ever explored the brain content of Al and Si in alcoholic use disorder (AUD). Materials and methods: To fill this gap, the present study employed inductively coupled plasma optical emission spectrometry to investigate levels of Al and Si in 10 brain regions and in the liver of AUD patients (n = 31) and control (n = 32) post-mortem. Results: Al content was detected only in AUD patients at mean ± SD total brain content of 1.59 ± 1.19 mg/kg, with the highest levels in the thalamus (4.05 ± 12.7 mg/kg, FTH), inferior longitudinal fasciculus (3.48 ± 9.67 mg/kg, ILF), insula (2.41 ± 4.10 mg/kg) and superior longitudinal fasciculus (1.08 ± 2.30 mg/kg). Si content displayed no difference between AUD and control, except for FTH. Positive inter-region correlations between the content of both elements were identified in the cingulate cortex, hippocampus, and ILF. Conclusions: The findings of this study suggest that AUD patients may potentially be prone to Al-induced neurodegeneration in their brain—although this hypothesis requires further exploration.


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 886
Author(s):  
Silvana Piersanti ◽  
Manuela Rebora ◽  
Gianandrea Salerno ◽  
Sylvia Anton

Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information.


1986 ◽  
Vol 251 (6) ◽  
pp. H1333-H1340 ◽  
Author(s):  
B. Klein ◽  
W. Kuschinsky ◽  
H. Schrock ◽  
F. Vetterlein

Previous investigations have established a strong correlation between local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCGU). In the present study the relationship between density of perfused brain capillaries and LCBF or LCGU was investigated in conscious and anesthetized rats. Perfused capillaries were stained by labeling the plasma with the gamma globulin-coupled fluorochromes, fluorescein isothiocyanate (FITC) and lissamine-rhodamine B 200 (RB 200). The density of perfused capillaries was determined in 12 different brain structures by fluorescence microscopy of embedded brain sections following coronal sectioning in a cryostat. Significant differences were found among brain structures investigated; the lowest density of perfused capillaries was found in the white matter (e.g., corpus callosum 162 fragments/mm2), whereas the highest values were determined in the structures of the auditory system (e.g., inferior colliculus 810 fragments/mm2). LCBF and LCGU were measured in two separate groups of rats using standard autoradiographic methods. In all three experimental groups, the same structures were identified and measured with a high degree of accuracy and local resolution. Density of perfused capillaries correlated well with LCBF (r = 0.93) and even better with LCGU (r = 0.97). In addition to the relationship between LCGU and LCBF established by earlier studies, these data show the intimate interrelationship between LCGU, density of perfused capillaries, and LCBF.


2000 ◽  
Vol 78 (3) ◽  
pp. 237-243 ◽  
Author(s):  
Hao Shen ◽  
Krishna G Peri ◽  
Xing-Fei Deng ◽  
Sylvain Chemtob ◽  
Daya R Varma

Distribution of α1-adrenoceptor (α1AR) subtype (α1A, α1B, α1D) proteins in brain, heart, kidney, and liver of 1-week-old rats and in brain, heart, aorta, kidney, liver, vas deferens, prostate, and adrenal glands of adult rats was investigated by Western analysis, using receptor subtype specific polyclonal antibodies. High levels of immunoreactive α1AAR and α1DAR in brain and heart and of α1BAR in liver and heart of neonatal rats were detected. In adult rat tissues, the abundance of α1AAR protein was most marked in the brain, intermediate in heart, aorta, liver, vas deferens, and adrenals, and minimal in the kidney and prostate; relative to other tissues, the expression of α1BAR was higher in brain and heart and that of α1DAR in brain. All the three receptor subtypes increased with age in the brain cortex, whereas the abundance of α1BAR increased in the heart but decreased in the liver; α1AAR and α1DAR in liver, kidney, and heart were not affected by age. It is concluded that α1AR subtypes are widely expressed in different neonatal and adult rat tissues.Key words: α1A-adrenoceptors, α1B-adrenoceptors, α1D-adrenoceptors, α1-adrenoceptor proteins.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Susanne Nikolaus ◽  
Hans-Jörg Wittsack ◽  
Frithjof Wickrath ◽  
Anja Müller-Lutz ◽  
Hubertus Hautzel ◽  
...  

Abstract D-cycloserine (DCS) and amantadine (AMA) act as partial NMDA receptor (R) agonist and antagonist, respectively. In the present study, we compared the effects of DCS and AMA on dopamine D2/3R binding in the brain of adult rats in relation to motor behavior. D2/3R binding was determined with small animal SPECT in baseline and after challenge with DCS (20 mg/kg) or AMA (40 mg/kg) with [123I]IBZM as radioligand. Immediately post-challenge, motor/exploratory behavior was assessed for 30 min in an open field. The regional binding potentials (ratios of the specifically bound compartments to the cerebellar reference region) were computed in baseline and post-challenge. DCS increased D2/3R binding in nucleus accumbens, substantia nigra/ventral tegmental area, thalamus, frontal, motor and parietal cortex as well as anterodorsal and posterior hippocampus, whereas AMA decreased D2/3R binding in nucleus accumbens, caudateputamen and thalamus. After DCS, ambulation and head-shoulder motility were decreased, while sitting was increased compared to vehicle and AMA. Moreover, DCS increased rearing relative to AMA. The regional elevations of D2/3R binding after DCS reflect a reduction of available dopamine throughout the mesolimbocortical system. In contrast, the reductions of D2/3R binding after AMA indicate increased dopamine in nucleus accumbens, caudateputamen and thalamus. Findings imply that, after DCS, nigrostriatal and mesolimbic dopamine levels are directly related to motor/exploratory activity, whereas an inverse relationship may be inferred for AMA.


1989 ◽  
Vol 9 (5) ◽  
pp. 579-588 ◽  
Author(s):  
Astrid Nehlig ◽  
Anne Pereira de Vasconcelos ◽  
Sylvette Boyet

The postnatal changes in local cerebral blood flow in freely moving rats were measured by means of the quantitative autoradiographic [14C]iodoantipyrine method. The animals were studied at 10, 14, 17, 21, and 35 days and at the adult stage. At 10 days after birth, rates of blood flow were very low and quite homogeneous in most cerebral structures except in a few posterior areas. From these relatively uniform levels, values of local cerebral blood flow rose notably to reach a peak at 17 days in all brain regions studied. Rates of blood flow decreased between 17 and 21 days after birth and then increased from weaning time to reach the known characteristic distribution of the adult rat. The postnatal evolution of local cerebral blood flow in the rat is in good agreement with previous studies in other species such as dog and humans that also show higher rates of cerebral blood flow and glucose utilization at immature stages. However, in the rat, local cerebral blood flow and local cerebral glucose utilization are not coupled over the whole postnatal period studied, since blood flow rates reach peak values at 17 days whereas glucose utilization remains still quite low at that stage. The high rate of cerebral blood flow in the 17-day-old rat may reflect the energetic and biosynthetic needs of the actively developing brain that are completed by the summation of glucose and ketone body utilization.


1985 ◽  
Vol 5 (3) ◽  
pp. 393-400 ◽  
Author(s):  
Astrid Nehlig ◽  
Linda J. Porrino ◽  
Alison M. Crane ◽  
Louis Sokoloff

The quantitative 2-[14C]deoxyglucose autoradiographic method was used to study the fluctuations of energy metabolism in discrete brain regions of female rats during the estrous cycle. A consistent though statistically nonsignificant cyclic variation in average glucose utilization of the brain as a whole was observed. Highest levels of glucose utilization occurred during proestrus and metestrus, whereas lower rates were found during estrus and diestrus. Statistically significant fluctuations were found specifically in the hypothalamus and in some limbic structures. Rates of glucose utilization in the female rat brain were compared with rates in normal male rats. Statistically significant differences between males and females at any stage of the estrous cycle were confined mainly to hypothalamic areas known to be involved in the control of sexual behavior. Glucose utilization in males and females was not significantly different in most other cerebral structures.


Sign in / Sign up

Export Citation Format

Share Document