scholarly journals Isoflurane Causes Greater Neurodegeneration Than an Equivalent Exposure of Sevoflurane in the Developing Brain of Neonatal Mice

2010 ◽  
Vol 112 (6) ◽  
pp. 1325-1334 ◽  
Author(s):  
Ge Liang ◽  
Christopher Ward ◽  
Jun Peng ◽  
Yifan Zhao ◽  
Baosheng Huang ◽  
...  

Background We hypothesized that isoflurane has a greater potency to induce neurodegeneration than sevoflurane in the developing brains of neonatal mice based on our previous studies in cell culture. Methods We treated 7-day-old mice with either 0.75% isoflurane or 1.1% sevoflurane ( approximately 0.5 minimum alveolar concentration) for 6 h and then obtained blood and brain samples at 2 h after the anesthesia treatment for determination of neuroapoptosis in different brain regions and the neurodegenerative biomarker S100beta in the blood. The mechanisms of neurodegeneration induced by isoflurane or sevoflurane were also compared by determining protein expressions of the cell cycle and apoptosis-related proteins. In separate groups, memory and learning ability were evaluated through the use of Morris Water Maze testing in mice at postnatal day 42 after anesthesia treatment at postnatal day 7. Results Isoflurane but not sevoflurane significantly increased the neurodegenerative biomarker S100beta in the blood. Isoflurane treatments significantly increased apoptosis indicated by the activation of caspase-3 and elevation of poly-(ADP-ribose) polymerase in different brain regions. An equipotent exposure of sevoflurane tended to increase apoptosis in hippocampal and cortex areas but was significantly less potent than isoflurane. Neither isoflurane nor sevoflurane significantly changed protein levels of glyceraldehyde-3-phosphate dehydrogenase, beta-site amyloid beta-precursor protein-cleaving enzyme, and cell cycle regulatory proteins (CDK4, cyclin D1). Isoflurane and sevoflurane at the selected exposures did not significantly alter memory and learning ability. Conclusion At equipotent exposures, isoflurane has a greater potency than sevoflurane to cause neurodegeneration in the developing brains of neonatal mice.

2022 ◽  
Vol 12 (2) ◽  
pp. 306-315
Author(s):  
Jie Song ◽  
Cheng Chen ◽  
Hui Zhang

Osteoarthritis (OA) is a chronic and inflammatory disease, leading to pain or even disability in severe cases. LncRNA PCGEM1 (PCGEM1) is reported to be dysregulated, serving as critical regulators in various human diseases, including OA. However, the biological role of PCGEM1 and its underlying mechanisms during OA remained unclear. In the present study, CHON-001 cells were exposed to interleukin (IL)-1β to construct the OA cell model. Expression of PCGEM1 and miR-152-3p in cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Corresponding commercial kits were used to measure the expressions of lactate dehydrogenase (LDH), inter-leukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Protein levels of apoptosis-related proteins, cleaved-Caspase3 and Caspase3, were detected by Western blotting. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) tetrazolium (MTT) and flow cytometry assays were utilized for the determination of cell proliferation and apoptosis. The association between PCGEN1 and miR-152-3p was confirmed by a dual-luciferase reporter assay. From the results, PCGEM1 expression was significantly increased while miR-152-3p was inhibited in CHON-001 cells after IL-1β treatment. In addition, silencing of PCGEM1 could promote proliferation, inhibit the apoptosis, suppress LDH level and alleviate inflammation response caused by IL-1β in CHON-001 cells by sponging miR-152-3p. In a word, PCGEM1 down-regulation suppressed OA progression by the regulation of miR-152-3p expression, functioning as a potential therapeutic target for OA clinical treatment.


2020 ◽  
Vol 47 (10) ◽  
pp. 8293-8300
Author(s):  
Roberto Paredes ◽  
Marion Schneider ◽  
Stella Pearson ◽  
Hsiang Yin Teng ◽  
James R. Kelly ◽  
...  

Abstract Aberrantly high expression of EVI1 in acute myeloid leukaemia (AML) is associated with poor prognosis. For targeted treatment of EVI1 overexpressing AML a more detailed understanding of aspects of spatiotemporal interaction dynamics of the EVI1 protein is important. EVI1 overexpressing SB1690CB AML cells were used for quantification and protein interaction studies of EVI1 and ΔEVI1. Cells were cell cycle-synchronised by mimosine and nocodazole treatment and expression of EVI1 and related proteins assessed by western blot, immunoprecipitation and immunofluorescence. EVI1 protein levels oscillate through the cell cycle, and EVI1 is degraded partly by the proteasome complex. Both EVI1 and ΔEVI1 interact with the co-repressor CtBP1 but dissociate from CtBP1 complexes during mitosis. Furthermore, a large fraction of EVI1, but not ΔEVI1 or CtBP1, resides in the nuclear matrix. In conclusion, EVI1- protein levels and EVI1-CtBP1 interaction dynamics vary though the cell cycle and differ between EVI1 and ΔEVI1. These data ad to the functional characterisation of the EVI1 protein in AML and will be important for the development of targeted therapeutic approaches for EVI1-driven AML.


2006 ◽  
Vol 114 (S 1) ◽  
Author(s):  
B Trojanowicz ◽  
Z Chen ◽  
J Bialek ◽  
Y Radestock ◽  
S Hombach-Klonisch ◽  
...  

2020 ◽  
Vol 17 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Jing Ma ◽  
Yuan Gao ◽  
Wei Tang ◽  
Wei Huang ◽  
Yong Tang

Background: Studies have suggested that cognitive impairment in Alzheimer’s disease (AD) is associated with dendritic spine loss, especially in the hippocampus. Fluoxetine (FLX) has been shown to improve cognition in the early stage of AD and to be associated with diminishing synapse degeneration in the hippocampus. However, little is known about whether FLX affects the pathogenesis of AD in the middle-tolate stage and whether its effects are correlated with the amelioration of hippocampal dendritic dysfunction. Previously, it has been observed that FLX improves the spatial learning ability of middleaged APP/PS1 mice. Objective: In the present study, we further characterized the impact of FLX on dendritic spines in the hippocampus of middle-aged APP/PS1 mice. Results: It has been found that the numbers of dendritic spines in dentate gyrus (DG), CA1 and CA2/3 of hippocampus were significantly increased by FLX. Meanwhile, FLX effectively attenuated hyperphosphorylation of tau at Ser396 and elevated protein levels of postsynaptic density 95 (PSD-95) and synapsin-1 (SYN-1) in the hippocampus. Conclusion: These results indicated that the enhanced learning ability observed in FLX-treated middle-aged APP/PS1 mice might be associated with remarkable mitigation of hippocampal dendritic spine pathology by FLX and suggested that FLX might be explored as a new strategy for therapy of AD in the middle-to-late stage.


2021 ◽  
pp. 074823372110155
Author(s):  
Weizhe Pan ◽  
Shengnan Yu ◽  
Jin Jia ◽  
Junyang Hu ◽  
Liang Jie ◽  
...  

Vinyl chloride (VC) is a confirmed human carcinogen associated with hepatocellular carcinoma and angiosarcoma. However, the role of microRNAs (miRNAs) in liver cell cycle changes under VC exposure remains unclear, which prevents research on the mechanism of VC-induced carcinogenesis. In this study, male rats were injected intraperitoneally with VC (0, 5, 25, and 125 mg/kg body weight) for 6, 8, and 12 weeks. Cell cycle analysis of liver cells, miRNA-222, miRNA-199a, miRNA-195, and miRNA-125b expression in the liver and serum, and target protein expression were performed at different time points. The results showed a higher percentage of hepatocytes in the G1/G0 and S phases at the end of 6 and 12 weeks of VC exposure, respectively. MiRNA-222 expression decreased initially and then increased, whereas miRNA-199a, miRNA-195, and miRNA-125b expression increased initially and then decreased, which corresponded with changes in cell cycle distribution and related target proteins expression (p27, cyclinA, cyclinD1, and CDK6). The corresponding expression levels of miRNAs in serum did not change. Dynamic changes in miR-222, miR-199a, miR-195, and miR-125b induced by VC can lead to cell cycle deregulation by affecting cell cycle-related proteins, and these miRNAs can serve as early biomarkers for malignant transformation caused by VC.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 211
Author(s):  
Anna Malkova ◽  
Dmitriy Kudlay ◽  
Igor Kudryavtsev ◽  
Anna Starshinova ◽  
Piotr Yablonskiy ◽  
...  

According to an analysis of published data, only 20% of patients with the new coronavirus infection develop severe life-threatening complications. Currently, there are no known biomarkers, the determination of which before the onset of the disease would allow assessing the likelihood of its severe course. The purpose of this literature review was to analyze possible genetic factors characterizing the immune response to the new coronavirus infection that could be associated with the expression of angiotension-converting enzyme 2 (ACE-2) and related proteins as predictors of severe Corona virus disease 2019 (COVID-19). We analyzed original articles published in Medline, PubMed and Scopus databases from December 2019 to November 2020. For searching articles, we used the following keywords: New coronavirus infection, Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), COVID-19, severe course, complications, thrombosis, cytokine storm, ACE-2, biomarkers. In total, 3714 publications were selected using the keywords, of which 8 were in congruence with all the criteria. The literature analysis of the association of immunogenic characteristics and the expression of ACE-2 and related proteins with the development of severe COVID-19 revealed following genetic factors: HLA-B*46:01 genotype, CXCR6 gene hypoexpression, CCR9 gene expression, TLR7, rs150892504 mutations in the ERAP2 gene, overexpression of wild-type ACE-2, TMPRSS2 and its different polymorphisms. Genes, associated with the severe course, are more common among men. According to the analysis data, it can be assumed that there are population differences. However, the diagnostic significance of the markers described must be confirmed with additional clinical studies.


Sign in / Sign up

Export Citation Format

Share Document