scholarly journals Ex vivo gut culture for studying differentiation and migration of small intestinal epithelial cells

Open Biology ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 170256 ◽  
Author(s):  
Xiaofei Sun ◽  
Xing Fu ◽  
Min Du ◽  
Mei-Jun Zhu

Epithelial cultures are commonly used for studying gut health. However, due to the absence of mesenchymal cells and gut structure, epithelial culture systems including recently developed three-dimensional organoid culture cannot accurately represent in vivo gut development, which requires intense cross-regulation of the epithelial layer with the underlying mesenchymal tissue. In addition, organoid culture is costly. To overcome this, a new culture system was developed using mouse embryonic small intestine. Cultured intestine showed spontaneous peristalsis, indicating the maintenance of the normal gut physiological structure. During 10 days of ex vivo culture, epithelial cells moved along the gut surface and differentiated into different epithelial cell types, including enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We further used the established ex vivo system to examine the role of AMP-activated protein kinase (AMPK) on gut epithelial health. Tamoxifen-induced AMPK α 1 knockout vastly impaired epithelial migration and differentiation of the developing ex vivo gut, showing the crucial regulatory function of AMPK α 1 in intestinal health.

Author(s):  
Debbie Clements ◽  
Suzanne Miller ◽  
Roya Babaei-Jadidi ◽  
Mike Adam ◽  
S. Steven Potter ◽  
...  

Lymphangioleiomyomatosis (LAM) is a female specific cystic lung disease in which TSC2 deficient LAM cells, LAM-Associated Fibroblasts (LAFs) and other cell types infiltrate the lungs. LAM lesions can be associated with type II alveolar epithelial cells (AT2 cells). We hypothesised that the behaviour of AT2 cells in LAM is influenced locally by LAFs. We tested this hypothesis in patient samples and in vitro. In human LAM lung, nodular AT2 cells show enhanced proliferation when compared to parenchymal AT2 cells, demonstrated by increased Ki67 expression. Further, nodular AT2 cells express proteins associated with epithelial activation in other disease states including Matrix Metalloproteinase 7, and Fibroblast Growth Factor 7 (FGF7). In vitro, LAF conditioned medium is mitogenic and positively chemotactic for epithelial cells, increases the rate of epithelial repair and protects against apoptosis. In vitro, LAM patient-derived TSC2 null cells cocultured with LAFs upregulate LAF expression of the epithelial chemokine and mitogen FGF7, which is a potential mediator of fibroblast-epithelial crosstalk, in an mTOR dependent manner. In a novel in vitro model of LAM, ex vivo cultured LAM lung-derived microtissues promote both epithelial migration and adhesion. Our findings suggest that AT2 cells in LAM display a proliferative, activated phenotype and that fibroblast accumulation following LAM cell infiltration into the parenchyma contributes to this change in AT2 cell behaviour. Fibroblast-derived FGF7 may contribute to the cross-talk between LAFs and hyperplastic epithelium in vivo, but does not appear to be the main driver of the effects of LAFs on epithelial cells in vitro.


Author(s):  
Donghyun Kim ◽  
Yeo-Jun Yoon ◽  
Dojin Choi ◽  
Jisun Kim ◽  
Jae-Yol Lim

Lumen formation of salivary glands has been investigated using in vivo or ex vivo rudiment culture models. In this study, we used a three-dimensional (3D) salivary gland organoid culture system and demonstrated that lumen formation could be recapitulated in mouse SMG organoids. In our organoid culture system, lumen formation was induced by vasoactive intestinal peptide and accelerated by treatment with RA. Furthermore, lumen formation was observed in branching duct-like structure when cultured in combination of fibroblast growth factors (FGF) in the presence of retinoic acid (RA). We suggest RA signaling-mediated regulation of VIPR1 and KRT7 as the underlying mechanism for lumen formation, rather than apoptosis in the organoid culture system. Collectively, our results support a fundamental role for RA in lumen formation and demonstrate the feasibility of 3D organoid culture as a tool for studying salivary gland morphogenesis.


2021 ◽  
Author(s):  
Maja C Funk ◽  
Jan G Gleixner ◽  
Florian Heigwer ◽  
Erica Valentini ◽  
Zeynep Aydin ◽  
...  

During ageing, cell-intrinsic and extrinsic factors lead to the decline of tissue function and organismal health. Disentangling these factors is important for developing effective strategies to prolong organismal healthspan. Here, we addressed this question in the mouse intestinal epithelium, which forms a dynamic interface with its microenvironment and receives extrinsic signals affecting its homeostasis and tissue ageing. We systematically compared transcriptional profiles of young and aged epithelial cells in vivo and ex vivo in cultured intestinal organoids. We found that all cell types of the aged epithelium exhibit an inflammation phenotype, which is marked by MHC class II upregulation and most pronounced in enterocytes. This was accompanied by elevated levels of the immune tolerance markers PD-1 and PD-L1 in the aged tissue microenvironment, indicating dysregulation of immunological homeostasis. Intestinal organoids from aged mice still showed an inflammation signature after weeks in culture, which was concurrent with increased chromatin accessibility of inflammation-associated loci. Our results reveal a cell-intrinsic, persistent inflammation phenotype in aged epithelial cells, which might contribute to systemic inflammation observed during ageing.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Joao N. Ferreira ◽  
Sasitorn Rungarunlert ◽  
Ganokon Urkasemsin ◽  
Christabella Adine ◽  
Glauco R. Souza

Salivary gland (SG) functional damage and severe dry mouth (or xerostomia) are commonly observed in a wide range of medical conditions from autoimmune to metabolic disorders as well as after radiotherapy to treat specific head and neck cancers. No effective therapy has been developed to completely restore the SG functional damage on the long-term and reverse the poor quality of life of xerostomia patients. Cell- and secretome-based strategies are currently being tested in vitro and in vivo for the repair and/or regeneration of the damaged SG using (1) epithelial SG stem/progenitor cells from salispheres or explant cultures as well as (2) nonepithelial stem cell types and/or their bioactive secretome. These strategies will be the focus of our review. Herein, innovative 3D bioprinting nanotechnologies for the generation of organotypic cultures and SG organoids/mini-glands will also be discussed. These bioprinting technologies will allow researchers to analyze the secretome components and extracellular matrix production, as well as their biofunctional effects in 3D mini-glands ex vivo. Improving our understanding of the SG secretome is critical to develop effective secretome-based therapies towards the regeneration and/or repair of all SG compartments for proper restoration of saliva secretion and flow into the oral cavity.


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


2001 ◽  
Vol 7 (S2) ◽  
pp. 580-581
Author(s):  
CA Witz ◽  
S Cho ◽  
VE Centonze ◽  
IA Montoya-Rodriguez ◽  
RS Schenken

Using human peritoneal explants, we have previously demonstrated that endometrial stromal cells (ESCs) and endometrial epithelial cells (EECs) attach to intact mesothelium. Attachment occurs within one hour and mesothelial invasion occurs within 18 hours (Figure 1). We have also demonstrated that, in vivo, the mesothelium overlies a continuous layer of collagen IV (Col IV).More recently we have used CLSM, to study the mechanism and time course of ESC and EEC attachment and invasion through mesothelial monolayers. in these studies, CellTracker® dyes were used to label cells. Mesothelial cells were labeled with chloromethylbenzoylaminotetramethylrhodamine (CellTracker Orange). Mesothelial cells were then plated on human collagen IV coated, laser etched coverslips. Mesothelial cells were cultured to subconfluence. ESCs and EECs, labeled with chloromethylfluorscein diacetate (CellTracker Green) were plated on the mesothelial monolayers. Cultures were examined at 1, 6, 12 and 24 hours with simultaneous differential interference contrast and CLSM.


1993 ◽  
Vol 21 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Knut-Jan Andersen ◽  
Erik Ilsø Christensen ◽  
Hogne Vik

The tissue culture of multicellular spheroids from the renal epithelial cell line LLC-PK1 (proximal tubule) is described. This represents a biological system of intermediate complexity between renal tissue in vivo and simple monolayer cultures. The multicellular structures, which show many similarities to kidney tubules in vivo, including a vectorial water transport, should prove useful for studying the potential nephrotoxicity of drugs and chemicals in vitro. In addition, the propagation of renal epithelial cells as multicellular spheroids in serum-free culture may provide information on the release of specific biological parameters, which may be suppressed or masked in serum-supplemented media.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1483
Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A–G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-existing immunity detected across screened populations. However, many aspects of the basic virology of species D—such as their cellular tropism, receptor usage, and in vivo biodistribution profile—remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)—a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications.


2021 ◽  
Vol 17 (6) ◽  
pp. 1079-1087
Author(s):  
Zaozao Chen ◽  
Qiwei Li ◽  
Shihui Xu ◽  
Jun Ouyang ◽  
Hongmei Wei

Matrix nanotopography plays an essential role in regulating cell behaviors including cell proliferation, differentiation, and migration. While studies on isolated single cell migration along the nanostructural orientation have been reported for various cell types, there remains a lack of understanding of how nanotopography regulates the behavior of collectively migrating cells during processes such as epithelial wound healing. We demonstrated that collective migration of epithelial cells was promoted on nanogratings perpendicular to, but not on those parallel to, the wound-healing axis. We further discovered that nanograting-modulated epithelial migration was dominated by the adhesion turnover process, which was Rho-associated protein kinase activity-dependent, and the lamellipodia protrusion at the cell leading edge, which was Rac1-GTPase activity-dependent. This work provides explanations to the distinct migration behavior of epithelial cells on nanogratings, and indicates that the effect of nanotopographic modulations on cell migration is cell-type dependent and involves complex mechanisms


2004 ◽  
Vol 167 (6) ◽  
pp. 1113-1122 ◽  
Author(s):  
Sergei A. Kuznetsov ◽  
Mara Riminucci ◽  
Navid Ziran ◽  
Takeo W. Tsutsui ◽  
Alessandro Corsi ◽  
...  

The ontogeny of bone marrow and its stromal compartment, which is generated from skeletal stem/progenitor cells, was investigated in vivo and ex vivo in mice expressing constitutively active parathyroid hormone/parathyroid hormone–related peptide receptor (PTH/PTHrP; caPPR) under the control of the 2.3-kb bone-specific mouse Col1A1 promoter/enhancer. The transgene promoted increased bone formation within prospective marrow space, but delayed the transition from bone to bone marrow during growth, the formation of marrow cavities, and the appearance of stromal cell types such as marrow adipocytes and cells supporting hematopoiesis. This phenotype resolved spontaneously over time, leading to the establishment of marrow containing a greatly reduced number of clonogenic stromal cells. Proliferative osteoprogenitors, but not multipotent skeletal stem cells (mesenchymal stem cells), capable of generating a complete heterotopic bone organ upon in vivo transplantation were assayable in the bone marrow of caPPR mice. Thus, PTH/PTHrP signaling is a major regulator of the ontogeny of the bone marrow and its stromal tissue, and of the skeletal stem cell compartment.


Sign in / Sign up

Export Citation Format

Share Document