scholarly journals Effects of coal's initial macro-cracks on rockburst tendency of rock–coal composite samples

2019 ◽  
Vol 6 (11) ◽  
pp. 181795 ◽  
Author(s):  
Shaojie Chen ◽  
Dawei Yin ◽  
Huimin Liu ◽  
Bing Chen ◽  
Ning Jiang

In the present study, uniaxial compression tests were conducted on sandstone–coal composite samples to investigate the effects of original macro-cracks in coal on the rockburst tendency. First, the energy dissipation theory was used to derive the elastic energy attenuation index of composite samples during uniaxial loading. Then, based on the test results obtained, the rockburst tendency of composite samples was evaluated and analysed using the uniaxial compressive strength and elastic energy attenuation index. The results show that the original macro-cracks in coal deteriorated the rockburst tendency of composite samples. The original horizontal cracks had the lowest effect on the rockburst tendency, whereas the vertical penetrating cracks through the coal centre (parallel to the loading direction) displayed the greatest effect. The mechanism by which these macro-cracks weakened the rockburst tendency involved two steps: (i) changing the physical properties and energy accumulation conditions of composite samples and (ii) increasing the energy dissipation of composite samples during uniaxial loading. These aspects are important to understand the rockburst hazards induced by the structural instability and failure of the composite system of coal seam and roof rock during deep coal mining.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Tong-bin Zhao ◽  
Wei-yao Guo ◽  
Feng-hai Yu ◽  
Yun-liang Tan ◽  
Bin Huang ◽  
...  

Destress drilling method is one of the commonly used methods for mitigating rock bursts, especially in coal mining. To better understand the influences of drilling arrangements on the destress effect is beneficial for rock burst mitigation. This study first introduced the rock burst mitigation mechanism of the destress drilling method and then numerically investigated the influences of drilling arrangements on the mechanical properties of coal models through uniaxial compression tests. Based on the test results, the energy evolution (i.e., the energy dissipation and bursting energy indexes) influenced by different drilling arrangements was analyzed. When the drilling diameter, the number of drilling holes in one row, or the number of drilling rows increases, the bearing capacity of specimens nonlinearly decreases, but the energy dissipation index increases. In addition, the drilling diameter or the number of drilling holes in one row affects the failure mode weakly, which is different from that of the number of drilling rows. Consequently, the bursting energy index decreases as increasing the drilling diameter or the number of drilling holes in one row, but as increasing the number of drilling rows, the variation law of bursting energy index is not obvious. At last, the influencing mechanism of drilling arrangement on the rock burst prevention mechanism of the destress drilling method was discussed and revealed.


Author(s):  
Jafar Javadpour ◽  
Bradley L. Thiel ◽  
Sarikaya Mehmet ◽  
Ilhan A. Aksay

Practical applications of bulk YBa2Cu3O7−x materials have been limited because of their inadequate critical current density (jc) and poor mechanical properties. Several recent reports have indicated that the addition of Ag to the YBa2Cu3O7−x system is beneficial in improving both mechanical and superconducting properties. However, detailed studies concerning the effect of Ag on the microstructural development of the cermet system have been lacking. Here, we present some observations on the microstructural evolution in the YBa2Cu3O7−x/Ag composite system.The composite samples were prepared by mixing various amounts (2.5 - 50 wt%) AgNO3 in the YBa2Cu3O7−x nitrate precursor solution. These solutions were then spray dried and the resulting powders were either cold pressed or tape cast. The microstructures of the sintered samples were analyzed using SEM (Philips 515) and an analytical TEM (Philips 430T).The SEM micrographs of the compacts with 2.5 and 50 wt% Ag addition sintered at 915°C (below the melting point of Ag) for 1 h in air are displayed in Figs. 1 and 2, respectively.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
A. Mujdeci ◽  
D. V. Bompa ◽  
A. Y. Elghazouli

AbstractThis paper describes an experimental investigation into confinement effects provided by circular tubular sections to rubberised concrete materials under combined loading. The tests include specimens with 0%, 30% and 60% rubber replacement of mineral aggregates by volume. After describing the experimental arrangements and specimen details, the results of bending and eccentric compression tests are presented, together with complementary axial compression tests on stub-column samples. Tests on hollow steel specimens are also included for comparison purposes. Particular focus is given to assessing the confinement effects in the infill concrete as well as their influence on the axial–bending cross-section strength interaction. The results show that whilst the capacity is reduced with the increase in the rubber replacement ratio, an enhanced confinement action is obtained for high rubber content concrete compared with conventional materials. Test measurements by means of digital image correlation techniques show that the confinement in axial compression and the neutral axis position under combined loading depend on the rubber content. Analytical procedures for determining the capacity of rubberised concrete infilled cross-sections are also considered based on the test results as well as those from a collated database and then compared with available recommendations. Rubber content-dependent modification factors are proposed to provide more realistic representations of the axial and flexural cross-section capacities. The test results and observations are used, in conjunction with a number of analytical assessments, to highlight the main parameters influencing the behaviour and to propose simplified expressions for determining the cross-section strength under combined compression and bending.


Author(s):  
Yiming Ma ◽  
Liusheng He ◽  
Ming Li

Steel slit shear walls (SSSWs), made by cutting slits in steel plates, are increasingly adopted in seismic design of buildings for energy dissipation. This paper estimates the seismic energy dissipation capacity of SSSWs considering out-of-plane buckling. In the experimental study, three SSSW specimens were designed with different width-thickness ratios and aspect ratios and tested under quasi-static cyclic loading. Test results showed that the width-thickness ratio of the links dominated the occurrence of out-of-plane buckling, which produced pinching in the hysteresis and thus reduced the energy dissipation capacity. Out-of-plane buckling occurred earlier for the links with a larger width-thickness ratio, and vice versa. Refined finite element model was built for the SSSW specimens, and validated by the test results. The concept of average pinching parameter was proposed to quantify the degree of pinching in the hysteresis. Through the parametric analysis, an equation was derived to estimate the average pinching parameter of the SSSWs with different design parameters. A new method for estimating the energy dissipation of the SSSWs considering out-of-plane buckling was proposed, by which the predicted energy dissipation agreed well with the test results.


Author(s):  
Enea Mustafaraj ◽  
Yavuz Yardim

In this paper, it is presented the experimental results of a campaign on diagonal compression tests, as of ASTM E519-02, to assess and compare the in-plane behavior of standard size of 1200 × 1200 × 250 mm, for three unreinforced and three reinforced wall panels by glass fiber reinforced polymer (GFRP) embedded in an inorganic matrix.From the diagonal compression test results, were determined some of the main mechanical parameters such as: shear strength, modulus of rigidity and ductility, before and after application of the reinforcement.The experimental results showed that the GFRP reinforced panels exhibited a significant increase of 127% in shear resistance, 1100% in ductility and 650% in modulus of rigidity when compared to unreinforced panels.It was concluded that this technique provided satisfactory results and can be considered a suitable method for repair of masonry structures.


1994 ◽  
Vol 211-212 ◽  
pp. 233-236 ◽  
Author(s):  
F.A. Lewis ◽  
R.-A. McNicholl ◽  
A. Biscarini ◽  
B. Coluzzi ◽  
C. Costa ◽  
...  

1970 ◽  
Vol 24 (4) ◽  
pp. 295-304 ◽  
Author(s):  
Krešimir Grilec ◽  
Gojko Marić ◽  
Katica Miloš

The requirements for weight reduction and improvement of performances in the design of transport means are often in contradiction to the requirements for increased safety. One of the possible ways of meeting these requirements is the application of metal foams. Thanks to cellular structure of aluminium foam along with low weight, the capability of noise and vibration damping, they feature also excellent capabilities of absorbing impact energy. Their application in the production of impact-sensitive elements of mobile or stationary transport means has significantly contributed to the reduction of the impact or collision consequences.The focus of this paper is on improving the energy absorption characteristics of aluminium foams considering the significance of their application for the technology of traffic and transport.The paper analyzes the influence of the chemical composition and density on the compression behaviour of aluminium foam. The aluminium foam samples were produced from Alulight precursor. The capability of samples to absorb mechanical energy has been estimated according to the results of compression tests. The tests were performed on a universal test machine. The test results showed that aluminium foams feature good energy absorption and the absorption capability decreases with the foam density. The Alulight AlMgSi 0.6 TiH2 - 0.4 foam can absorb more energy than Alulight AlSi 10 TiH2 – 0.8 foam.


Author(s):  
Ömür Çimen ◽  
Mehmet Saltan ◽  
S. Nilay Keskin

AbstractHigh-plasticity clayey subgrade, which is unsuitable for road construction, may sometimes occur along highway routes. In such cases, engineers need to change the route of a highway project, resulting in an increase in road length and project costs. In this study, waste pumice was examined for stabilization of high-plasticity clayey subgrade, which is inappropriate for road construction. For this purpose, the physical and index properties of clay and pumice were determined. Then, the pumice was mixed with high plasticity clay at different ratios by weight. By performing standard Proctor compaction tests on the mixtures, the effects of adding pumice on compaction were also studied. Unconfined compression tests and California bearing ratio (CBR) tests were performed on all pumice-clay mixtures, and the test results and the CBR ratios were compared for each sample, respectively. The results showed that pumice stabilization improved the mechanical properties and reduced the swelling potential of high plasticity clayey subgrade.


2016 ◽  
Vol 858 ◽  
pp. 91-97
Author(s):  
Jun Hua Xiao ◽  
Wen Qi Zheng

To investigate the macroscopic mechanical properties of undisturbed structural Xiashu loess in the lower reaches of China’s Yangtze River under triaxial compression, and obtain the intrinsic explanations for the macroscopic mechanical properties from the microscopic point of view, in laboratory, triaxial compression tests were carried out, microstructure images of sheared samples were collected by scanning electron microscope (SEM), and quantitative parameters of microstructure (mainly about particle or pore size, distribution, and alignment) were extracted by digital image processing technique. Based on the test results, the deviator stress-strain relationships of both undisturbed and remoulded Xiashu loess, the structural strength, and the microstructural evolution mechanism about the formation of shear failure zone of Xiashu loess under triaxial compression were analyzed.


Sign in / Sign up

Export Citation Format

Share Document