scholarly journals Comparative analysis of spontaneous blinking and the corneal reflex

2020 ◽  
Vol 7 (12) ◽  
pp. 201016
Author(s):  
Julián Espinosa ◽  
Jorge Pérez ◽  
David Mas

Ocular surface health, the cognitive status, psychological health or human neurological disorders, among others, can be assessed by studying eye blinking, which can be differentiated in spontaneous, reflex and voluntary. Its diagnostic potential has provided a great number of works that evaluate their characteristics and variations depending on the subject's condition (sex, tiredness, health, …). The objective of this study was to analyse the differences in blinking kinematics of spontaneous and reflex blinks, distinguishing between direct and consensual reflexes, using a self-developed, non-invasive and image processing-based method. A video-oculography system is proposed using an air jet driven by a syringe to induce reflex and a high-speed camera to record the blinking of both eyes. The light intensity diffused by the eye changes during blinking and peaks when the eyelid closes. Sixty-second sequences were recorded of 25 subjects blinking. Intensity curves were off-line fitted to an exponentially modified Gaussian (EMG) function, whose σ , μ and τ parameters were analysed. A two-way analysis of variance (ANOVA) of these parameters was conducted to test the influence of the subject, the eye and blink type. In the closing phase, direct and consensual corneal reflexes are faster than spontaneous blinking, but there was no significant difference between them, nor between right and left eyes. In the opening phase, the direct corneal reflex was the slowest and significant differences appeared between right and left eyes.

2015 ◽  
Vol 156 (12) ◽  
pp. 472-478 ◽  
Author(s):  
Péter Kincses ◽  
Norbert Kovács ◽  
Kázmér Karádi ◽  
János Kállai

This paper is a summary report on the basic questions of the biopsychosocial approach to Parkinson’s disease. It deals with cognitive, affective and psychological health issues which significantly influence the outcome of the physical rehabilitation. In spite of the unchanged cognitive status, the psychological burden of the changes in the quality of life, the obstruction, the change in the affective tone, and the shrinking ability to fulfil social roles decrease the patient’s quality of life. An interdisciplinary approach is best suited for mitigating these effects. Not only the patient but also his/her family and environment is seriously affected by the disease and its consequences. Treatment and rehabilitation options for increasing or maintaining the quality of life of the affected patients are diverse, and significantly depend on the features of the health care system. The authors believe that the following review emphasizing health psychological principles may contribute to the work of professionals working in clinical and rehabilitational fields and through them may increase the quality of life of patients and their family. Orv. Hetil., 2015, 156(12), 472–478.


2020 ◽  
Vol 02 ◽  
Author(s):  
Laurel Stringer ◽  
Sarah Malley ◽  
Darrell M. Hutto ◽  
Jason A. Griggs ◽  
Susana M. Salazar Marocho

Background: The most common approach to remove yttria stabilized zirconia (YSZ) fixed-dental prostheses (FDPs) is by means of diamond burs attached to a high-speed handpiece. This process is time-consuming and destructive. The use of lasers over mechanical instrumentation for removal of FDPs can lead to efficient and predictable restoration retrievability. However, the heat produced might damage the tooth pulp (>42˚C). Objective: The purpose of this study was to determine the maximum temperature (T) reached during the use of different settings of the erbium, chromium:yttrium-scandium-gallium-garnet Er,Cr:YSGG laser through a YSZ ceramic. Methods: YSZ slices (1 mm thick) were assigned into 7 groups. For the control group, a diamond bur was used to cut a 1 mm groove into the YSZ slices. For the 6 experimental groups, the laser was operated at a constant combination of 33% water and 66% air during 30 s with two different power settings (W) at three frequencies (PPS), as follows (W/PPS): 2.5/20, 2.5/30, 2.5/45, 4.5/20, 4.5/30, 4.5/45. The T through the YSZ slice was recorded in degrees Celsius by using a digital thermometer with a K thermocouple. Results: The median T of the control group was 26.5˚C. The use of 4.5 W resulted in the median T (˚C) of 44.2 at 20 PPS, 53.3 at 30 PPS, and 58.9 at 45 PPS, while 2.5 W showed 34.6, 31.6, and 25.0 at 20, 30, and 45 PPS, respectively. KruskalWallis one-way ANOVA showed that within each power setting, the T was similar. The high power and lowest frequency (4.5/20) showed no significant difference from the 2.5 W settings and the control group. Conclusion: The lower power setting (2.5 W) is a potential method for the use of the Er,Cr:YSGG laser to debond YSZ structures. The higher power (4.5 W) with high frequencies (30 and 45 PPS) is unsuitable.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
M. Musse ◽  
G. Hajjar ◽  
N. Ali ◽  
B. Billiot ◽  
G. Joly ◽  
...  

Abstract Background Drought is a major consequence of global heating that has negative impacts on agriculture. Potato is a drought-sensitive crop; tuber growth and dry matter content may both be impacted. Moreover, water deficit can induce physiological disorders such as glassy tubers and internal rust spots. The response of potato plants to drought is complex and can be affected by cultivar type, climatic and soil conditions, and the point at which water stress occurs during growth. The characterization of adaptive responses in plants presents a major phenotyping challenge. There is therefore a demand for the development of non-invasive analytical techniques to improve phenotyping. Results This project aimed to take advantage of innovative approaches in MRI, phenotyping and molecular biology to evaluate the effects of water stress on potato plants during growth. Plants were cultivated in pots under different water conditions. A control group of plants were cultivated under optimal water uptake conditions. Other groups were cultivated under mild and severe water deficiency conditions (40 and 20% of field capacity, respectively) applied at different tuber growth phases (initiation, filling). Water stress was evaluated by monitoring soil water potential. Two fully-equipped imaging cabinets were set up to characterize plant morphology using high definition color cameras (top and side views) and to measure plant stress using RGB cameras. The response of potato plants to water stress depended on the intensity and duration of the stress. Three-dimensional morphological images of the underground organs of potato plants in pots were recorded using a 1.5 T MRI scanner. A significant difference in growth kinetics was observed at the early growth stages between the control and stressed plants. Quantitative PCR analysis was carried out at molecular level on the expression patterns of selected drought-responsive genes. Variations in stress levels were seen to modulate ABA and drought-responsive ABA-dependent and ABA-independent genes. Conclusions This methodology, when applied to the phenotyping of potato under water deficit conditions, provides a quantitative analysis of leaves and tubers properties at microstructural and molecular levels. The approaches thus developed could therefore be effective in the multi-scale characterization of plant response to water stress, from organ development to gene expression.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1595
Author(s):  
Asif Javed ◽  
Peter Rättö ◽  
Lars Järnström ◽  
Henrik Ullsten

One severe weakness of most biopolymers, in terms of their use as packaging materials, is their relatively high solubility in water. The addition of kraft lignin to starch coating formulations has been shown to reduce the water solubility of starch in dry coatings. However, lignin may also migrate into aqueous solutions. For this paper, kraft lignin isolated using the LignoBoost process was used in order to examine the effect of pH level on the solubility of lignin with and without ammonium zirconium carbonate (AZC). Machine-glazed (MG) paper was coated in a pilot coating machine, with the moving substrate at high speed, and laboratory-coated samples were used as a reference when measuring defects (number of pinholes). Kraft lignin became soluble in water at lower pH levels when starch was added to the solution, due to the interactions between starch and lignin. This made it possible to lower the pH of the coating solutions, resulting in increased water stability of the dry samples; that is, the migration of lignin to the model liquids decreased when the pH of the coating solutions was reduced. No significant difference was observed in the water vapor transmission rate (WVTR) between high and low pH for the pilot-coated samples. The addition of AZC to the formulation reduced the migration of lignin from the coatings to the model liquids and led to an increase in the water contact angle, but also increased the number of pinholes in the pilot-coated samples.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2469
Author(s):  
Chen-Yi Xie ◽  
Chun-Lap Pang ◽  
Benjamin Chan ◽  
Emily Yuen-Yuen Wong ◽  
Qi Dou ◽  
...  

Esophageal cancer (EC) is of public health significance as one of the leading causes of cancer death worldwide. Accurate staging, treatment planning and prognostication in EC patients are of vital importance. Recent advances in machine learning (ML) techniques demonstrate their potential to provide novel quantitative imaging markers in medical imaging. Radiomics approaches that could quantify medical images into high-dimensional data have been shown to improve the imaging-based classification system in characterizing the heterogeneity of primary tumors and lymph nodes in EC patients. In this review, we aim to provide a comprehensive summary of the evidence of the most recent developments in ML application in imaging pertinent to EC patient care. According to the published results, ML models evaluating treatment response and lymph node metastasis achieve reliable predictions, ranging from acceptable to outstanding in their validation groups. Patients stratified by ML models in different risk groups have a significant or borderline significant difference in survival outcomes. Prospective large multi-center studies are suggested to improve the generalizability of ML techniques with standardized imaging protocols and harmonization between different centers.


Author(s):  
O Kocar ◽  
H Livatyalı

An aluminized 22MnB5 (Boron) steel sheet, used for structural parts in the automotive industry, was subjected to press-hardening followed by austenitizing, both in a conventional furnace and via the conductive (electric resistance) heating method, an innovative technique based on the Joule’s principle for fast heating of the sheet metal. Conductive heating presents a number of advantages over the in-furnace heating method. These include a more efficient use of energy, as well as the requirement of less time and space for heating, thus lowering costs. After press-hardening was performed using both methods, the microstructural and mechanical characterizations of both specimens were examined for optical microscopy, hardness, tensile strength, and high-speed impact tests. The results showed that the press-hardening process transformed the ferritic–pearlitic microstructure in the as-received state into martensite after die quenching and caused a substantial increase in hardness and strength at the expense of ductility and impact toughness. On the other hand, no significant difference was observed in either the microstructure or mechanical properties with respect to the heating method used. The results obtained in the present investigation concur with the findings of current literature.


1994 ◽  
Vol 9 (2) ◽  
pp. 105-109
Author(s):  
G Mecheri ◽  
Y Bissuel ◽  
J Dalery ◽  
JL Terra ◽  
G Balvay ◽  
...  

SummaryIn vivo NMR 31p spectroscopy is a non invasive, non ionizing method of exploration of energy and phospholipid metabolism in the brain. This study consisted of comparing 31p spectra in five patients with Senile Dementia of Alzheimer Type (SDAT) with those of four controls of similar ages. Abnormal phosphonionocsters (PME) concentrations, either high or low, were found in the patients, but statistical analysis did not elicit any significant difference relative to controls.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2102
Author(s):  
Shea Connell ◽  
Robert Mills ◽  
Hardev Pandha ◽  
Richard Morgan ◽  
Colin Cooper ◽  
...  

The objective is to develop a multivariable risk model for the non-invasive detection of prostate cancer prior to biopsy by integrating information from clinically available parameters, Engrailed-2 (EN2) whole-urine protein levels and data from urinary cell-free RNA. Post-digital-rectal examination urine samples collected as part of the Movember Global Action Plan 1 study which has been analysed for both cell-free-RNA and EN2 protein levels were chosen to be integrated with clinical parameters (n = 207). A previously described robust feature selection framework incorporating bootstrap resampling and permutation was applied to the data to generate an optimal feature set for use in Random Forest models for prediction. The fully integrated model was named ExoGrail, and the out-of-bag predictions were used to evaluate the diagnostic potential of the risk model. ExoGrail risk (range 0–1) was able to determine the outcome of an initial trans-rectal ultrasound guided (TRUS) biopsy more accurately than clinical standards of care, predicting the presence of any cancer with an area under the receiver operator curve (AUC) = 0.89 (95% confidence interval(CI): 0.85–0.94), and discriminating more aggressive Gleason ≥ 3 + 4 disease returning an AUC = 0.84 (95% CI: 0.78–0.89). The likelihood of more aggressive disease being detected significantly increased as ExoGrail risk score increased (Odds Ratio (OR) = 2.21 per 0.1 ExoGrail increase, 95% CI: 1.91–2.59). Decision curve analysis of the net benefit of ExoGrail showed the potential to reduce the numbers of unnecessary biopsies by 35% when compared to current standards of care. Integration of information from multiple, non-invasive biomarker sources has the potential to greatly improve how patients with a clinical suspicion of prostate cancer are risk-assessed prior to an invasive biopsy.


2014 ◽  
Vol 129 (S1) ◽  
pp. S45-S50 ◽  
Author(s):  
J H Kim ◽  
J Rimmer ◽  
N Mrad ◽  
S Ahmadzada ◽  
R J Harvey

AbstractObjective:This study investigated the effect of Betadine on ciliated human respiratory epithelial cells.Methods:Epithelial cells from human sinonasal mucosa were cultured at the air–liquid interface. The cultures were tested with Hanks' balanced salt solution containing 10 mM HEPES (control), 100 µM ATP (positive control), 5 per cent Betadine or 10 per cent Betadine (clinical dose). Ciliary beat frequency was analysed using a high-speed camera on a computer imaging system.Results:Undiluted 10 per cent Betadine (n = 6) decreased the proportion of actively beating cilia over 1 minute (p < 0.01). Ciliary beat frequency decreased from 11.15 ± 4.64 Hz to no detectable activity. The result was similar with 5 per cent Betadine (n = 7), with no significant difference compared with the 10 per cent solution findings.Conclusion:Betadine, at either 5 and 10 per cent, was ciliotoxic. Caution should be applied to the use of topical Betadine solution on the respiratory mucosal surface.


Sign in / Sign up

Export Citation Format

Share Document