Thirty years of penicillin therapy

1971 ◽  
Vol 179 (1057) ◽  
pp. 293-319 ◽  

Three decades have passed since the publication in the Lancet (Abraham et al . 1941) of the paper by our group at Oxford in which it was, for the first time, reported that the mould metabolite penicillin exhibited remarkable chemotherapeutic effects in clinical bacterial infections, including those caused by Staphylococcus aureus , against which no member of the only then known group of antibacterials possessing in vivo chemotherapeutic activity, the sulphonamides, was fully effective. A year earlier, in 1940, we had published, also in the Lancet (Chain et al . 1940), our first paper on the chemotherapeutic power of penicillin in experimental bacterial infections in mice which was dramatic and of unprecedented magnitude. The introduction into clinical medicine of penicillin therapy and of the antibiotics therapy stemming from it has, by general consensus of opinion, completely revolutionized the treatment of bacterial infections in both man and animals, and rendered the large majority of them, including the most severe ones, amenable to successful therapeutic control.

2020 ◽  
Vol 2 (2) ◽  
pp. 61-68
Author(s):  
Agnina Listya Anggraini ◽  
Ratih Dewi Dwiyanti ◽  
Anny Thuraidah

Infection is a disease caused by the presence of pathogenic microbes, including Staphylococcus aureus and Escherichia coli. Garlic (Allium sativum L.) has chemical contents such as allicin, alkaloids, flavonoids, saponins, tannins, and steroids, which can function as an antibacterial against Staphylococcus aureus and Escherichia coli. This study aims to determine the antibacterial properties of garlic extract powder against Staphylococcus aureus and Escherichia coli. This research is the initial stage of the development of herbal medicines to treat Staphylococcus aureus and Escherichia coli infections. The antibacterial activity test was carried out by the liquid dilution method. The concentrations used were 30 mg/mL, 40 mg/mL, 50 mg/mL, 60 mg/mL and 70 mg/mL. The results showed that the Minimum Inhibitory Concentration (MIC) against Staphylococcus aureus and Escherichia coli was 40 mg/mL and 50 mg / mL. Minimum Bactericidal Concentration (MBC) results for Staphylococcus aureus and Escherichia coli are 50 mg/mL and 70 mg/mL. Based on the Simple Linear Regression test, the R2 value of Staphylococcus aureus and Escherichia coli is 0.545 and 0.785, so it can be concluded that there is an effect of garlic extract powder on the growth of Staphylococcus aureus and Escherichia coli by 54.5% and 78.5%. Garlic (Allium sativum L.) extract powder has potential as herbal medicine against bacterial infections but requires further research to determine its effect in vivo.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mark A. T. Blaskovich ◽  
Angela M. Kavanagh ◽  
Alysha G. Elliott ◽  
Bing Zhang ◽  
Soumya Ramu ◽  
...  

AbstractAntimicrobial resistance threatens the viability of modern medicine, which is largely dependent on the successful prevention and treatment of bacterial infections. Unfortunately, there are few new therapeutics in the clinical pipeline, particularly for Gram-negative bacteria. We now present a detailed evaluation of the antimicrobial activity of cannabidiol, the main non-psychoactive component of cannabis. We confirm previous reports of Gram-positive activity and expand the breadth of pathogens tested, including highly resistant Staphylococcus aureus, Streptococcus pneumoniae, and Clostridioides difficile. Our results demonstrate that cannabidiol has excellent activity against biofilms, little propensity to induce resistance, and topical in vivo efficacy. Multiple mode-of-action studies point to membrane disruption as cannabidiol’s primary mechanism. More importantly, we now report for the first time that cannabidiol can selectively kill a subset of Gram-negative bacteria that includes the ‘urgent threat’ pathogen Neisseria gonorrhoeae. Structure-activity relationship studies demonstrate the potential to advance cannabidiol analogs as a much-needed new class of antibiotics.


2020 ◽  
Vol 13 (3) ◽  
pp. 35 ◽  
Author(s):  
Isabel Titze ◽  
Tatiana Lehnherr ◽  
Hansjörg Lehnherr ◽  
Volker Krömker

The lytic efficacy of bacteriophages against Staphylococcus aureus isolates from bovine milk was investigated in vitro, regarding possible applications in the therapy of udder inflammation caused by bacterial infections (mastitis). The host range of sequenced, lytic bacteriophages was determined against a collection of 92 Staphylococcus (S.) aureus isolates. The isolates originated from quarter foremilk samples of clinical and subclinical mastitis cases. A spot test and a subsequent plaque assay were used to determine the phage host range. According to their host range, propagation and storage properties, three phages, STA1.ST29, EB1.ST11, and EB1.ST27, were selected for preparing a bacteriophage mixture (1:1:1), which was examined for its lytic activity against S. aureus in pasteurized and raw milk. It was found that almost two thirds of the isolates could be lysed by at least one of the tested phages. The bacteriophage mixture was able to reduce the S. aureus germ density in pasteurized milk and its reduction ability was maintained in raw milk, with only a moderate decrease compared to the results in pasteurized milk. The significant reduction ability of the phage mixture in raw milk promotes further in vivo investigation.


2003 ◽  
Vol 47 (6) ◽  
pp. 1979-1983 ◽  
Author(s):  
Andrea Giacometti ◽  
Oscar Cirioni ◽  
Yael Gov ◽  
Roberto Ghiselli ◽  
Maria Simona Del Prete ◽  
...  

ABSTRACT Staphylococcus aureus is a prevalent cause of bacterial infections associated with indwelling medical devices. RNA III inhibiting peptide (RIP) is known to inhibit S. aureus pathogenesis by disrupting quorum-sensing mechanisms. RIP was tested in the present study for its ability to inhibit S. aureus biofilm formation in a rat Dacron graft model. The activity of RIP was synergistic with those of antibiotics for the complete prevention of drug-resistant S. aureus infections.


2005 ◽  
Vol 170 (3) ◽  
pp. 477-485 ◽  
Author(s):  
Lynda M. Stuart ◽  
Jiusheng Deng ◽  
Jessica M. Silver ◽  
Kazue Takahashi ◽  
Anita A. Tseng ◽  
...  

Phagocyte recognition and clearance of bacteria play essential roles in the host response to infection. In an on-going forward genetic screen, we identify the Drosophila melanogaster scavenger receptor Croquemort as a receptor for Staphylococcus aureus, implicating for the first time the CD36 family as phagocytic receptors for bacteria. In transfection assays, the mammalian Croquemort paralogue CD36 confers binding and internalization of Gram-positive and, to a lesser extent, Gram-negative bacteria. By mutational analysis, we show that internalization of S. aureus and its component lipoteichoic acid requires the COOH-terminal cytoplasmic portion of CD36, specifically Y463 and C464, which activates Toll-like receptor (TLR) 2/6 signaling. Macrophages lacking CD36 demonstrate reduced internalization of S. aureus and its component lipoteichoic acid, accompanied by a marked defect in tumor necrosis factor-α and IL-12 production. As a result, Cd36−/− mice fail to efficiently clear S. aureus in vivo resulting in profound bacteraemia. Thus, response to S. aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain, which initiates TLR2/6 signaling.


2019 ◽  
Vol 85 (9) ◽  
Author(s):  
A. Jochim ◽  
T. Shi ◽  
D. Belikova ◽  
S. Schwarz ◽  
A. Peschel ◽  
...  

ABSTRACTMultidrug-resistant bacterial pathogens are becoming increasingly prevalent, and novel strategies to treat bacterial infections caused by these organisms are desperately needed. Bacterial central metabolism is crucial for catabolic processes and provides precursors for anabolic pathways, such as the biosynthesis of essential biomolecules like amino acids or vitamins. However, most essential pathways are not regarded as good targets for antibiotic therapy since their products might be acquired from the environment. This issue raises doubts about the essentiality of such targets during infection. A putative target in bacterial anabolism is the methionine biosynthesis pathway. In contrast to humans, almost all bacteria carry methionine biosynthesis pathways which have often been suggested as putative targets for novel anti-infectives. While the growth of methionine auxotrophic strains can be stimulated by exogenous methionine, the extracellular concentrations required by most bacterial species are unknown. Furthermore, several phenotypic characteristics of methionine auxotrophs are only partly reversed by exogenous methionine. We investigated methionine auxotrophic mutants ofStaphylococcus aureus,Pseudomonas aeruginosa, andEscherichia coli(all differing in methionine biosynthesis enzymes) and found that each needed concentrations of exogenous methionine far exceeding that reported for human serum (∼30 µM). Accordingly, these methionine auxotrophs showed a reduced ability to proliferate in human serum. Additionally,S. aureusandP. aeruginosamethionine auxotrophs were significantly impaired in their ability to form and maintain biofilms. Altogether, our data show intrinsic defects of methionine auxotrophs. This result suggests that the pathway should be considered for further studies validating the therapeutic potential of inhibitors.IMPORTANCENew antibiotics that attack novel targets are needed to circumvent widespread resistance to conventional drugs. Bacterial anabolic pathways, such as the enzymes for biosynthesis of the essential amino acid methionine, have been proposed as potential targets. However, the eligibility of enzymes in these pathways as drug targets is unclear because metabolites might be acquired from the environment to overcome inhibition. We investigated the nutritional needs of methionine auxotrophs of the pathogensStaphylococcus aureus,Pseudomonas aeruginosa, andEscherichia coli. We found that each auxotrophic strain retained a growth disadvantage at methionine concentrations mimicking those availablein vivoand showed that biofilm biomass was strongly influenced by endogenous methionine biosynthesis. Our experiments suggest that inhibition of the methionine biosynthesis pathway has deleterious effects even in the presence of external methionine. Therefore, additional efforts to validate the effects of methionine biosynthesis inhibitorsin vivoare warranted.


2006 ◽  
Vol 188 (21) ◽  
pp. 7686-7688 ◽  
Author(s):  
Vicki Fleming ◽  
Ed Feil ◽  
Andrew K. Sewell ◽  
Nicholas Day ◽  
Angus Buckling ◽  
...  

ABSTRACT Repression of virulence by Staphylococcus aureus strains from different Agr groups has been demonstrated in vitro and is proposed as a means of competitive interference. Here, using the insect Manduca sexta, we show for the first time that this interference also occurs in vivo within a mixed population.


Author(s):  
A. B. Shevelev ◽  
E. P. Isakova ◽  
E. V. Trubnikova ◽  
N. La Porta ◽  
S. Martens ◽  
...  

Due to the spreading and increasing drug resistance of pathogens, the search for novel antibiotics is becoming ever more important. Plant-derived polyphenols are a vast and promising class of compounds with a potential to fight infectious diseases. Still, they are not routinely used in clinical practice. No reports on the in vivo studies of these compounds have been presented. The aim of our work was to compare the antimicrobial activity of resveratrol (stilbene), dihydroquercetin and dihydromyricetin (flavonols) extracted from the bark and wood of conifers against the dermatophytes Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Using the radial diffusion assay, we established that dihydroquercetin, resveratrol and dihydromyricetin exhibit high activity against S. aureus even at the smallest possible concentrations of 0.22, 0.15, and 0.15 mM, respectively. In contrast, the highest achievable concentrations of these compounds in the solutions (21.5, 15.5 and 15.0 mM for dihydroquercetin, resveratrol and dihydromyricetin, respectively) have no effect on the growth of P. aeruginosa and C. albicans. These findings suggest that polyphenols derived from conifers could have a potential to be used as a medicine for topical application to treat bacterial infections of the skin caused by S. aureus.


2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Roghaye Keykhasalar ◽  
Masoud Homayouni Tabrizi ◽  
Pouran Ardalan

Background: Linum usitatissimum Seed Essential Oil (LSEO) as an efficient antimicrobial compound contains various types of phytochemicals, such as lignans and phenols. Objectives: In the current study, we produced LSEO nanoemulsion (LSEO-NE) to study its antioxidant capacity and bactericidal activity against Staphylococcus aureus. Methods: The LSEO-NE was produced using the ultrasonication method and characterized by Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS), and Scanning Electron Microscopy (SEM). Then, we measured its antioxidant activity utilizing both ABTS and DPPH tests at four different LSEO-NE concentrations (200, 600, 800, and 1000 µg/mL) compared to glutathione. Finally, we evaluated its bactericidal activity on S. aureus by studying Antibiotic Susceptibility Testing (AST) using LSEO-NE-smeared discs compared to non-smeared and kanamycin discs. Results: The 67.3 nm droplets of LSEO-NE with PDI of 0.452 exhibited strong antioxidant activity, similar to glutathione, in both ABTS (IC50 = 350 µg/mL) and DPPH (IC50 = 235 µg/mL) tests. Moreover, the AST results revealed the significant sensitivity of S. aureus to LSEO-NE-smeared discs when compared to non-smeared and kanamycin discs. Conclusions: According to the results, LSEO-NE can be applied as a safe, natural, and effective antibiotic for bacterial infections caused by S. aureus in most organs, such as the respiratory system and skin. However, further in vivo studies are required to evaluate the LSEO-NE antibacterial efficiency against other pathogenic S. aureus strains.


Dose-Response ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 155932582090485 ◽  
Author(s):  
Syed Ali Raza Naqvi ◽  
Syed Muhammad Ali Shah ◽  
Laiba Kanwal ◽  
Muhammad Saeed ◽  
Atta-ul-Haq ◽  
...  

Multidrug resistance has increased globally in the communities. Bacterial infections associated with health care have weakened the existing antimicrobial therapy and demand the search for alternative therapies. In the present investigation, the medicinal plant Pulicaria gnaphalodes from Quetta, Pakistan, has been screened for antimicrobial potential. In vitro antimicrobial efficacy of P gnaphalodes extracts (methanol and ethanol) was quantitatively evaluated on the basis of zone of inhibition against different bacteria and minimum inhibitory concentration (MIC). In vivo, antihypercholesterolemic activity is determined in different rat groups. The results of the study indicated that the ethanol extract of P gnaphalodes showed maximum zone of inhibition for Bacillus subtilis of 12.1 ± 1.1 mm from all others. The methanol extract showed maximum zone of inhibition for Staphylococcus aureus of 11.9 ± 1.0 mm and rifampicin showed maximum zone of inhibition of 23.1 ± 0.9 mm. The results of ethanol and methanol extract of P gnaphalodes against different bacteria revealed that this plant has greater antimicrobial activity. However, the plant extract shows nonsignificant antihypercholesterolemic activity. The extract of this plant can be utilized as medicine to inhibit several infections caused by some bacterial pathogens found in human body.


Sign in / Sign up

Export Citation Format

Share Document