Effect of matrix cracking on the overall thermal conductivity of fibre-reinforced composites

The longitudinal thermal conductivity of a unidirectional fibre-reinforced composite containing an array of equally spaced transverse matrix cracks is calculated. The cracked composite is modelled by a cylindrical cell which accounts for altered heat transfer across the matrix cracks as well as through debonded portions of the fibre-matrix interface. Heat transfer mechanisms across the cracks and dedonded interfaces considered are contact, gaseous conduction, and radiation, and the relative importance of these mechanisms is discussed. Approximate closed form solutions to the cell model for the overall thermal conductivity are obtained using an approach reminiscent of the shear lag analysis of stiffness loss due to matrix cracking and debonding. Selected numerical results from a finite-element analysis of the cell model are presented to complement the analytical solutions. Both matrix cracking and interfacial debonding have the potential for significantly reducing the longitudinal thermal conductivity.

2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Brian Nyvang Legarth ◽  
Qingda Yang

Failure in elastic dual-phase materials under transverse tension is studied numerically. Cohesive zones represent failure along the interface and the augmented finite element method (A-FEM) is used for matrix cracking. Matrix cracks are formed at an angle of 55 deg−60 deg relative to the loading direction, which is in good agreement with experiments. Matrix cracks initiate at the tip of the debond, and for equi-biaxial loading cracks are formed at both tips. For elliptical reinforcement the matrix cracks initiate at the narrow end of the ellipse. The load carrying capacity is highest for ligaments in the loading direction greater than that of the transverse direction.


Author(s):  
Peter Vadasz

Spectacular heat transfer enhancement has been measured in nanofluid suspensions. Attempts in explaining these experimental results did not yield yet a definite answer. Modeling the heat conduction process in nanofluid suspensions is being shown to be a special case of heat conduction in porous media subject to Lack of Local thermal equilibrium (LaLotheq). The topic of heat conduction in porous media subject to Lack of Local thermal equilibrium (LaLotheq) is reviewed, introducing one of the most accurate methods of measuring the thermal conductivity, the transient hot wire method, and discusses its possible application to dual-phase systems. Maxwell’s concept of effective thermal conductivity is then introduced and theoretical results applicable for nanofluid suspensions are compared with published experimental data.


An experimental investigation has been carried out on the mechanical properties of unidirectional (0) 12 , (0, 90) 3S , (±45, 0 2 ) S , and (±45) 3S composites consisting of CAS glass ceramic reinforced with Nicalon SiC fibres. Measurements have been made of the elastic properties and of the tensile, compression and shear strengths of the composites, and these have been supported by a detailed study of the damage which occurs during monotonic and repeated loading. These damage studies have been carried out by means of edge replication microscopy and acoustic emission monitoring. The elastic properties of the composites are, by and large, close to the values that would be predicted from the constituent properties and lay-up sequences, but their strengths are lower than expected, and it appears that the Nicalon reinforcing fibre has been seriously degraded during manufacture. The fracture energy is much higher than predicted from observations of fibre pull-out, and it is suggested that the energy required to form a close three-dimensional network of matrix cracks could account for the high apparent toughness. The matrix cracking stress can be predicted reasonably closely by the Aveston, Cooper and Kelly model of cracking in brittle matrix composites, but it is shown that subcritical microcracks can form and/or grow at stresses well below the predicted critical values without affecting composite properties.


2017 ◽  
Vol 21 (4) ◽  
pp. 1627-1632 ◽  
Author(s):  
Jia-Jia Wu ◽  
Hong Tang ◽  
Yu-Xuan Wu

This paper proposes an effective method to predict the thermal conductivity of plain woven blended fabric to optimize woven fabric structure, and to evaluate thermal comfort. The unit cell model of fabric is established for numerical simulation of heat transfer through thickness. The thermal conductivity of blended yarns is calculated by a series model. The temperature and heat flux distributions are verified experimentally.


Author(s):  
Mohamed S. Aly-Hassan

Recently, increasing demands for smarter and smaller products calls for the development of multifunctional composites. These materials are used not only as structural materials but also satisfy the needs for additional functionalities such as thermal, electrical, magnetic, optical, chemical, biological, etc. In this research, a novel carbon nanotubes dispersion approach leads to a new generation of multifunctional composites with additionally novel thermal functionality, we called it heat-directed functionality. These distinctive composites have unique capability which can conduct the majority of the transferred heat by conduction to the preferred area or direction of the thermal structure. This unique heat-directed property can be attained by varying the in-plane thermal conductivity. Varying the in-plane thermal conductivity of the composites functionally is achieved by dispersing highly heat-conductive materials such as carbon nanotubes throughout the matrix functionally, not uniformly. Therefore, in this research three phase carbon/carbon composites have been fabricated with functionally dispersed carbon nanotubes throughout the carbon matrix of continuously plain woven carbon fiber fabrics in order to attain this useful property. The fabricated heat-directed carbon/carbon composites have been examined experimentally and numerically. The in-situ full-field infrared measurements and finite element analysis of the designed composites showed that the heat transfer direction can be substantially controlled by just functionally dispersed a few percentages of carbon nanotubes through the matrix of traditional long carbon fiber-reinforced carbon matrix composites. This exceptional property can play a significant performance improvement in heat transfer process along the in-plane of the materials as well as helping to decrease the heating up of the Earth, global warming, due to the escaped heat of many engineering applications. In other words, the efficient heat energy management or heat energy saving via using the introduced multifunctional carbon/carbon composites with heat-directed functionality can significantly help with both sides of the equation of efficient energy consumption and friendly-environment applications.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3990 ◽  
Author(s):  
Riming Tan ◽  
Jifeng Xu ◽  
Wei Sun ◽  
Zhun Liu ◽  
Zhidong Guan ◽  
...  

The effect of matrix cracking on the delamination morphology inside carbon fiber reinforced plastics (CFRP) laminates during low-velocity impact (LVI) is an open question. In this paper, the relationship between matrix cracking and delamination is studied by using cross-ply laminates. Several methods, including micrograph, C-scan, and visual inspection, were adopted to characterize the damage after LVI experiments. Based on the experimental results, finite element (FE) models were established to analyze the damage mechanisms. The matrix cracking was predicted by the extended finite element method (XFEM) and the Puck criteria, while the delamination was modeled by cohesive elements. It was revealed that the matrix crack in the bottom ply not only promoted the outward propagation of delamination but also contributed to the narrow delamination beneath the impact location. Multiple matrix cracks occurred in the middle ply. The ones close to the plate center initiated the delamination and prevented large-scale delamination beneath the impact location. For the cracks that were far away, no significant effect on delamination was found. In conclusion, the stress redistribution caused by the crack opening determines the delamination.


2003 ◽  
Vol 19 (1) ◽  
pp. 161-168 ◽  
Author(s):  
D.-A. Wang ◽  
W. Y. Chien ◽  
K. C. Liao ◽  
J. Pan ◽  
S. C. Tang

ABSTRACTAn approximate anisotropic yield function is presented for anisotropic sheet metals containing spherical voids. Hill's quadratic anisotropic yield function is used to describe the anisotropy of the matrix. The proposed yield function is validated using a three-dimensional finite element analysis of a unit cell model under different straining paths. The results of the finite element computations are shown in good agreement with those based on the yield function with three fitting parameters. For demonstration of applicability, the anisotropic Gurson yield function is adopted in a combined necking and shear localization analysis to model the failure of AA6111 aluminum sheets under biaxial stretching conditions.


2017 ◽  
Vol 35 (02) ◽  
pp. 179-185 ◽  
Author(s):  
A. Sayyidmousavi ◽  
H. Bougherara ◽  
S. R. Falahatgar ◽  
Z. Fawaz

ABSTRACTA novel micromechanical approach is proposed to calculate the effective thermal conductivities of fiber reinforced composite materials. The key advantage of the present formulation is its ability to yield closed form solutions for the effective thermal conductivity of composites in both longitudinal and transverse directions for three dimensional heat transfer problems. The obtained results are in good agreement with the experimental data reported in the literature. When compared with analytical and finite element solutions, the results are seen to be in better agreement with the hexagonal packed array compared to the square packed array which thus represents a more realistic model of the fiber distribution in the matrix medium.


1995 ◽  
Vol 10 (2) ◽  
pp. 381-386 ◽  
Author(s):  
T. Hirano ◽  
K. Usami ◽  
Y. Tanaka ◽  
C. Masuda

Internal damage in metal matrix composite (MMC) under static tensile loading was observed by in situ x-ray computed tomography based on synchrotron radiation (SR-CT). A tensile testing sample stage was developed to investigate the fracture process during the tensile test. Aluminum alloy matrix composites reinforced by long or short SiC fibers were used. The projection images obtained under tensile loading showed good performance of the sample stage, and matrix deformation and breaks of the long SiC fibers could be observed. In the CT images taken at the maximum stress just before failure, debondings of the short SiC fibers to the matrix, many pullouts of the fibers, and matrix cracking could be clearly observed. The in situ SR-CT allowed the observation of generation and growth of such defects under different tensile stress levels. The results from the nondestructive observation revealed that the MMC was broken by propagation of the matrix cracks which might be caused by stress concentration at the ends of the short fibers. A three-dimensional CT image reconstructed from many CT images provided easy understanding of the fiber arrangement, crack shape, and form of the void caused by fiber pullout. In situ SR-CT is a useful method for understanding failure mechanisms in advanced materials.


2012 ◽  
Vol 727-728 ◽  
pp. 1654-1659 ◽  
Author(s):  
Mabelle Biancarde Oliveira ◽  
Maryana Antonia Braga Batalha Souza ◽  
José Adilson de Castro ◽  
Alexandre José da Silva

The machines and equipment has required increasing performance of lubricating fluids and coolants which plays important role on reducing friction with the metal parts and heat extraction. Viscosity and thermal conductivity are the most important properties of lubricants, in relation to the friction between the fluid molecules. This paper presents two useful models to predict this properties and their relation with the particles volume fraction and temperature in the nanofluid formed by adition of iron or particles produced by friction. Nanofluids are innovative heat transfer fluids with superior potential for enhancing the heat transfer performance of conventional fluids. In this paper the Unit Cell Model (UCM) which considers the Brownian movement experienced by the nanoparticles are adapt to predict the increment of thermal conductivity of iron nanopowders and standard lubrication oil. The viscosity of the nanofluids was adapt from a model usually suitable for predict the effective viscosity of emulsions. Model results indicated a strong effect of the particle size and volume fractions on the increment of thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document