scholarly journals Salinization effects on coastal ecosystems: a terrestrial model ecosystem approach

2018 ◽  
Vol 374 (1764) ◽  
pp. 20180251 ◽  
Author(s):  
C. S. Pereira ◽  
I. Lopes ◽  
I. Abrantes ◽  
J. P. Sousa ◽  
S. Chelinho

In coastal areas, intrusion/irrigation with seawater can threaten biodiversity along with crop yields, and the leaching of salts from areas affected by these processes can increase the salinity of water bodies nearby. The aims of this study were to evaluate the effects of salinization on coastal soil ecosystems due to saline intrusion/irrigation. Terrestrial model ecosystems were used to simulate two soil salinization scenarios: (i) seawater intrusion and irrigation with distilled water and (ii) seawater intrusion and irrigation with saline water. Three sampling periods were established: T0—after acclimation period; T1—salinization effects; and T2—populations' recovery. In each sampling period, the abundance of nematodes, enchytraeids, springtails, mites and earthworms, and plant biomass were measured. Immediate negative effects on enchytraeid abundance were detected, especially at the higher level of saltwater via intrusion+irrigation. Eight weeks after the cessation of saline irrigation, the abundance of enchytraeids fully recovered, and some delayed effects were observed in earthworm abundance and plant biomass, especially at the higher soil conductivity level. The observed low capacity of soil to retain salts suggests that, particularly at high soil conductivities, nearby freshwater bodies can also be endangered. Under saline conditions similar to the ones assayed, survival of some soil communities can be threatened, leading to the loss of biodiversity. This article is part of the theme issue ‘Salt in freshwaters: causes, ecological consequences and future prospects’.

Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 221
Author(s):  
Saudi A. Rekaby ◽  
Mahrous Awad ◽  
Ali Majrashi ◽  
Esmat F. Ali ◽  
Mamdouh A. Eissa

Biochar is one of the important recycling methods in sustainable development, as it ensures the transformation of agricultural wastes into fertilizers and conditioners that improve soil properties and fertility. In the current study, corn cob-derived biochar (CB) was used to reduce the negative effects of saline water on quinoa (Chenopodium quinoa cv. Utosaya Q37) grown on Aridisols and Entisols, which are the major soil groups of Egyptian soils. Quinoa plants were cultivated in pot experiment and were irrigated with saline water (EC = 10 dS m−1). The experiment contained three treatments, including control without any treatment, biochar at a rate of 1% (w/w) (BC1), and biochar at a rate of 3% (w/w) (BC3). The findings of the current study showed that BC treatments realized significant effects on soil salinity, pH, soil organic matter (SOM), and plant availability and nutrients’ uptake in the two soils types. BC3 increased the SOM in Entisols and Aridisols by 23 and 44%; moreover, the dry biomass of quinoa plants was ameliorated by 81 and 41%, respectively, compared with the control. Addition of biochar to soil increased the nutrients’ use efficiencies by quinoa plants for the two studied Egyptian soils. Biochar addition caused significant increases in the use efficiency of nitrogen (NUF), phosphorus (PUE), and potassium (KUE) by quinoa plants. BC3 increased NUE, PUE, and KUS by 81, 81, and 80% for Entisols, while these increases were 40, 41, and 42% in the case of Aridisols. Based on the obtained results, the application of corn cob biochar improves the soil quality and alleviates the negative effects of saline irrigation on quinoa plants grown on Aridisols and Entisols Egyptian soils. Biochar can be used as a soil amendment in arid and semi-arid regions to reduce the salinity hazards.


Author(s):  
Sabri Kanzari ◽  
Rim Jaziri ◽  
Khouloud Ben Ali ◽  
Issam Daghari

Abstract The project ‘research and training on irrigation with saline water in Tunisia’ (UNESCO, 1970) was set up to specify Tunisian standards for the use of saline water and to mitigate their effects on crop yields. The objective of this study is to assess the risk of long-term soil salinization by considering the agricultural practices mentioned in the project for the ‘water quality’ experiment in the semi-arid region Cherfech (Tunisia). Hydrus-1D model was used to simulate the movement of water and the transfer of salts. Soil hydraulic and solute transport parameters were estimated using inverse modeling. Calibration and validation of the model was made for the water and salt profiles carried out with four irrigation qualities QA, QB, QC and QD. Four scenarios over 50 years were studied: (i) S1 with rainfall (400 mm) only; (ii) S2 with rainfall and irrigations (1,400 mm); (iii) S3 with a 2 °C increase in temperature; (iv) S4 with the addition of 100 mm·d−1 of rainfall. The four scenarios highlighted the high risk of soil salinization, especially for the QB, QC and QD qualities after 20 years of irrigation and the deep dynamics of water and salts beyond the root zone which increases the risk of groundwater salinization.


1994 ◽  
Vol 122 (3) ◽  
pp. 351-357 ◽  
Author(s):  
S. K. Dubey ◽  
R. C. Mondal

SUMMARYA field experiment at Gudha Experimental Farm, Central Soil Salinity Research Institute, Karnal, India, in 1983/84 evaluated the effect of gypsum (12·5 t/ha, 50% of gypsum requirement of soil), pyrite (10·2 t/ha, equivalent to gypsum on a sulphur basis), farmyard manure (FYM) (30 t/ha), gypsum + FYM, pyrite + FYM and a control, with saline (ECiW 4·0 dS/m) and non-saline (0·4 dS/m) irrigation water on soil properties and yields of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) in a highly sodic soil (pH 10·5, 96% exchangeable sodium). Application of these amendments enhanced the yield of both crops significantly, irrespective of the quality of the irrigation water used. Soil properties and crop yields were improved in the following order: control < FYM < pyrite < gypsum < pyrite + FYM < gypsum + FYM. Irrigation with saline water resulted in significantly higher yields of both crops than irrigation with non-saline water. Decreases in soil pH and exchangeable sodium and increases in exchangeable Ca + Mg and infiltration rate were greater after rice than wheat in the rotation, particularly when non-saline water was used.


2004 ◽  
Vol 52 (2) ◽  
pp. 149-156
Author(s):  
M. Irshad ◽  
T. Honna ◽  
S. Yamamoto ◽  
M. KAto ◽  

Saline irrigation water has a tremendous impact on the yield potential of crops. The distribution of mineral elements and their ratios in maize plant organs in response to saline water and nitrogen (N) nutrition was studied in a pot experiment for six weeks. The plants were separated into leaf, stalk and root and analysed for calcium (Ca), magnesium (Mg), sodium (Na), potassium (K) and chloride (Cl) contents. The partitioning and ratios of mineral nutrients in plants were significantly affected by water salinity and nitrogen level. In saline water the roots contained the highest Na content; Ca and Mg were higher in the leaf, whereas K and Cl were highest in the stalk. In non-saline water, Na and Cl were highest in the root and the remaining elements were greatest in the stalk. The K and Cl contents were significantly reduced by an increase in the N level, whereas the reverse was true for the Ca, Mg and Na contents. An inverse relationship was noted for the plant biomass versus both Na uptake and the Na/Ca, Na/Mg and Na/K ratios in plants irrigated with saline water. The mineral elements, with the exception of K, appeared to be highly correlated in the plant parts.


2016 ◽  
Vol 43 (7) ◽  
pp. 632 ◽  
Author(s):  
Aizheng Yang ◽  
Saqib Saleem Akhtar ◽  
Shahid Iqbal ◽  
Muhammad Amjad ◽  
Muhammad Naveed ◽  
...  

Quinoa is a facultative halophytic seed crop of increasing interest worldwide. Its performance declines under high salinity but can be improved by using halotolerant plant growth-promoting bacteria (PGPB) containing multi-traits, i.e. ACC-deaminase activity, exopolysaccharide secretion and auxin production. This study focussed on improving the productivity of quinoa through the use of six plant growth-promoting bacterial strains (both endophytic and rhizosphere). These were screened by conducting osmoadaptation assay, and the two most halotolerant strains (Enterobacter sp. (MN17) and Bacillus sp. (MN54)) were selected. These two strains were evaluated for their effects on growth, physiological characters and yield of quinoa. At the five leaf stage plants were irrigated with saline water having either 0 or 400 mM NaCl. The results indicated that saline irrigation significantly decreased the growth of quinoa, whereas inoculation of plants with MN17 and MN54 mitigated the negative effects of salinity by improving plant water relations and decreasing Na+ uptake, which consequently, reduced osmotic and ionic stress. Strain MN54 performed better than MN17, which might be because of its better growth promoting traits and higher rhizosphere colonisation efficiency than MN17. Our results suggest that growth and productivity of quinoa could be improved by inoculating with highly tolerant PGPB strain in salt-affected soils.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ogalo Baka Oluoch ◽  
Esther Mwende Muindi ◽  
Elisha Otieno Gogo

Salinity is a major biotic factor that negatively affects growth and yield of crops. Over 90% of the coastal region of Kenya is arid and semi-arid, most farmers in the region use borehole irrigation water which is saline. Amaranthus spp. is one of the main vegetables grown in coastal region. There is limited information regarding the effect of salinity on amaranthus production. The study sought to determine the effect of saline irrigation water on amaranthus growth in coastal Kenya. Two experiments were set up, one at Mivumoni Secondary School farm in Kwale County and another at Pwani University farm in Kilifi County from beginning of September 2019 to the end of January, 2020. The experiments were laid out in a randomized complete block design and replicated three times. The six treatments tested were: fresh water alone, 75% saline water alone, 100% saline water alone, fresh water + DAP, 75% saline water + DAP, 100% saline water + DAP. Crop growth data collected were: emergence rate, plant height, leaf number, leaf area, chlorophyll content, stem thickness, root density, root weight, root volume and total plant biomass. Data obtained were subjected to analysis of variance using SAS statistical package (SAS, Version 10) and treatment effects were tested for significance using F-test. Significant means at F-test was ranked using Tukey’s test at 5% level of significance. Amaranthus seeds sown in fresh water had higher emergence rate compared to seeds sown in saline water. Salinity regardless of concentration used and application of DAP, resulted in decrease in height, leaf number, leaf area, stem tickness, chlorophyll content, root length, root weight, root volume and total biomass. The study demonstrates that saline irrigation water in coastal Kenya has a negative effect on Amaranthus growth.


Author(s):  
Adriana dos S. Ferreira ◽  
Caio C. P. Leal ◽  
Bruno da S. Guirra ◽  
Salvador B. Torres ◽  
Marco Porceddu ◽  
...  

ABSTRACT Saline irrigation water at high levels causes disturbance in the growth of more sensitive plants. The objective of this research was to evaluate the initial growth of Pityrocarpa moniliformis seedlings under different electrical conductivity in irrigation water through physiological and biochemical analyses. The experiment was conducted in a greenhouse with five water electrical conductivities (0.5, 2.0, 4.0, 6.0 and 8.0 dS m-1) and four repetitions of 20 plants each, arranged in a randomized block design. Application of the treatments with irrigation water containing NaCl began at 30 days after sowing. To determine the behaviour of the species, the following variables were analysed: stem diameter, plant height, number of leaves, leaf area, Dickson quality index, shoot dry mass, root dry mass and total dry mass, as well as the biochemical variables, such as the concentrations of total soluble sugars, free proline and chlorophylls a and b. The increase in irrigation water salinity hampered the growth of P. moniliformis seedlings, with electrical conductivity of 0.5 dS m-1 being the limit for maximum production. The results also indicated that the deleterious effects of salt stress on P. moniliformis seedlings variables increase in concentrations of proline, total soluble sugars and betaine glycine.


Author(s):  
G Angelino ◽  
S Ascione ◽  
C Ruggiero

AbstractWe have investigated the effects of saline irrigation on growth and water relations of two sun-cured tobacco genotypes, Xp102 and Px107, which belong to the Xanthia and Perustitza tobacco ecotypes, respectively. We compared three commercial sea salt concentrations of the irrigation water (0.25%, 0.5%, and 1% w/v) plus a non-salinized control, corresponding to an electrical conductivity (ECw) of 4.4, 8.5, 15.7, 0.5 dS m-1 and osmotic potentials of -0.22, -0.35, -0.73, -0.02 MPa, respectively. The ECsoil increased with the salinity of the irrigation water. At high salinity (1%), the soil where Px107 plants were grown showed a significantly higher salinity compared to the soil of Xp102. For both genotypes, the soil water content increased at increasing salinity and during the growth season. Increasing salinity progressively reduced the leaf turgor pressure and enhanced the cellular osmotic adjustment. The latter resulted to be more pronounced in Px107 compared to Xp102 (0.36 vs. 0.20 MPa). At higher salinity (0.5% and 1%), both genotypes showed reduced leaf surface area, dry matter accumulation, water use, net assimilation rate (NAR) and crop growth rate (CGR). Px107 roots were more sensitive than shoot to salinity (3% reduction per dS m-1) and compared to Xp102 roots, which showed a reduced development only at 1% salinity. Assessment of plant salt tolerance according to the Maas and Hoffman model revealed a slope of 1-2% for both genotypes, indicating that these tobaccos are relatively more salt tolerant compared to other species.


Author(s):  
M. V. Dlamini ◽  
M. T. Masarirambi

Saline irrigation water is becoming an important water source as fresh water is fast becoming a scarce resource in many areas of the world, including Eswatini, especially in arid and semi-arid regions.  A study to test the response of two varieties of spinach (fordhook giant and mustard) to salinity was conducted in a field pot experiment at the Faculty of Agriculture at the Luyengo Campus of the University of Eswatini.  The treatments were laid in a randomized block design (RCBD).  The experiment consisted of four treatments, each replicated twelve times.  Treatments were salinity levels of 0.0 dS/m, 1.5 dS/m, 2.0 dS/m and 3.5 dS/m.  All the treatments were subjected to similar agronomic practices. Spinach was grown and observed for a period of five weeks.  Plant height was measured and the number of leaves counted weekly throughout the experiment. Significant differences (P < 0.05) between salinity treatments were obtained for plant height beginning in week 2 but were more pronounced in week 3, 4 and week 5.  No significant differences were obtained for the number of leaves.  There were however, clear significant differences between spinach irrigated with none saline irrigation water compared to saline irrigation water.   It was concluded that irrigating spinach with saline water of more than 2.0 dS/m drastically reduce plant growth but not the number of leaves under the conditions of the experiment.


Author(s):  
Borys A. Yakymchuk ◽  
◽  
Iryna P. Yakymchuk ◽  
Iryna P. Yakymchuk ◽  
Iryna O. Vakhotska ◽  
...  

Parental control is an integral part of parent-child relations and a traditional tool of socialization. However, numerous negative effects of parental intervention in the child’s inner world are known. This study clarifies the delayed effects of parental control and a detached parenting style. 270 men and women are aged 35-44 years filled in the questionnaires of hardiness, the sovereignty of the psychological space, and perceived behavior by the father and mother. The results confirmed the prevalence of parental control, especially its manifestations on the part of mothers about daughters. In adult women's lives, mothers' directiveness correlates with hostility and violation of personal boundaries as regards the body, personal territory, things, habits, social connections, and values; men noted maternal interference in the formation of sovereign habits and values. At the same time, parental non-involvement is widespread; the autonomy of fathers about children is significantly greater than mothers. Correlation analysis confirmed the assumption that parental directivity/autonomy determines the hardiness and sense of integrity of personal boundaries in adulthood. The effect of parental control in adulthood depends on the gender of the children and the parents. Maternal control is a strong negative factor for daughters, while maternal autonomy positively correlates with indicators of hardiness. Paternal control was a neutral factor for daughters. For sons, the directivity of father and mother contributes to the formation of resilience. The conclusion was made about the need for differentiation of positive and negative effects of parental control, taking into account gender positions.


Sign in / Sign up

Export Citation Format

Share Document