scholarly journals Anti-Inflammatory and Immunosuppressive Effects of the A2AAdenosine Receptor

2011 ◽  
Vol 11 ◽  
pp. 320-339 ◽  
Author(s):  
Gillian R. Milne ◽  
Timothy M. Palmer

The production of adenosine represents a critical endogenous mechanism for regulating immune and inflammatory responses during conditions of stress, injury, or infection. Adenosine exerts predominantly protective effects through activation of four 7-transmembrane receptor subtypes termed A1, A2A, A2B, and A3, of which the A2Aadenosine receptor (A2AAR) is recognised as a major mediator of anti-inflammatory responses. The A2AAR is widely expressed on cells of the immune system and numerousin vitrostudies have identified its role in suppressing key stages of the inflammatory process, including leukocyte recruitment, phagocytosis, cytokine production, and immune cell proliferation. The majority of actions produced by A2AAR activation appear to be mediated by cAMP, but downstream events have not yet been well characterised. In this article, we review the current evidence for the anti-inflammatory effects of the A2AAR in different cell types and discuss possible molecular mechanisms mediating these effects, including the potential for generalised suppression of inflammatory gene expression through inhibition of the NF-κB and JAK/STAT proinflammatory signalling pathways. We also evaluate findings fromin vivostudies investigating the role of the A2AAR in different tissues in animal models of inflammatory disease and briefly discuss the potential for development of selective A2AAR agonists for use in the clinic to treat specific inflammatory conditions.

2019 ◽  
Author(s):  
Federica De Leo ◽  
Giacomo Quilici ◽  
Mario Tirone ◽  
Valeria Mannella ◽  
Francesco De Marchis ◽  
...  

AbstractExtracellular HMGB1 triggers inflammation following infection or injury, and supports tumorigenesis in inflammation-related malignancies. HMGB1 has several redox states: reduced HMGB1 recruits inflammatory cells to injured tissues forming a heterocomplex with CXCL12 and signaling via its receptor CXCR4; disulfide-containing HMGB1 binds to TLR4 and promotes inflammatory responses. Here we show that Diflunisal, an aspirin-like nonsteroidal anti-inflammatory drug (NSAID) that has been in clinical use for decades, specifically inhibits in vitro and in vivo the chemotactic activity of HMGB1 at nanomolar concentrations, at least in part by binding directly to both HMGB1 and CXCL12 and disrupting their heterocomplex. Importantly, Diflunisal does not inhibit TLR4-dependent responses. Our findings clarify the mode of action of Diflunisal, and open the way to the rational design of functionally specific anti-inflammatory drugs.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6073
Author(s):  
Laily Rahmawati ◽  
Nur Aziz ◽  
Jieun Oh ◽  
Yo Han Hong ◽  
Byoung Young Woo ◽  
...  

Several Cissus species have been used and reported to possess medicinal benefits. However, the anti-inflammatory mechanisms of Cissus subtetragona have not been described. In this study, we examined the potential anti-inflammatory effects of C. subtetragona ethanol extract (Cs-EE) in vitro and in vivo, and investigated its molecular mechanism as well as its flavonoid content. Lipopolysaccharide (LPS)-induced macrophage-like RAW264.7 cells and primary macrophages as well as LPS-induced acute lung injury (ALI) and HCl/EtOH-induced acute gastritis mouse models were utilized. Luciferase assays, immunoblotting analyses, overexpression strategies, and cellular thermal shift assay (CETSA) were performed to identify the molecular mechanisms and targets of Cs-EE. Cs-EE concentration-dependently reduced the secretion of NO and PGE2, inhibited the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells, and decreased NF-κB- and AP-1-luciferase activity. Subsequently, we determined that Cs-EE decreased the phosphorylation events of NF-κB and AP-1 pathways. Cs-EE treatment also significantly ameliorated the inflammatory symptoms of HCl/EtOH-induced acute gastritis and LPS-induced ALI mouse models. Overexpression of HA-Src and HA-TAK1 along with CETSA experiments validated that inhibited inflammatory responses are the outcome of attenuation of Src and TAK1 activation. Taken together, these findings suggest that Cs-EE could be utilized as an anti-inflammatory remedy especially targeting against gastritis and acute lung injury by attenuating the activities of Src and TAK1.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Takuhiro Uto ◽  
De-Xing Hou ◽  
Osamu Morinaga ◽  
Yukihiro Shoyama

6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in wasabi (Wasabia japonica), which is a typical Japanese pungent spice. Recently,in vivoandin vitrostudies demonstrated that 6-MSITC has several biological properties, including anti-inflammatory, antimicrobial, antiplatelet, and anticancer effects. We previously reported that 6-MSITC strongly suppresses cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines, which are important factors that mediate inflammatory processes. Moreover, molecular analysis demonstrated that 6-MSITC blocks the expressions of these factors by suppressing multiple signal transduction pathways to attenuate the activation of transcriptional factors. Structure-activity relationships of 6-MSITC and its analogues containing an isothiocyanate group revealed that methylsulfinyl group and the length of alkyl chain of 6-MSITC might be related to high inhibitory potency. In this paper, we review the anti-inflammatory properties of 6-MSITC and discuss potential molecular mechanisms focusing on inflammatory responses by macrophages.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7393
Author(s):  
Jung-Hwan Kim ◽  
Tae-Jin Park ◽  
Jin-Soo Park ◽  
Min-Seon Kim ◽  
Won-Jae Chi ◽  
...  

Luteolin (LT), present in most plants, has potent anti-inflammatory properties both in vitro and in vivo. Furthermore, some of its derivatives, such as luteolin-7-O-glucoside, also exhibit anti-inflammatory activity. However, the molecular mechanisms underlying luteolin-3′-O-phosphate (LTP)-mediated immune regulation are not fully understood. In this paper, we compared the anti-inflammatory properties of LT and LTP and analyzed their molecular mechanisms of action; we obtained LTP via the biorenovation of LT. We investigated the anti-inflammatory activities of LT and LTP in macrophage RAW 264.7 cells. We confirmed from previously reported literature that LT inhibits the production of nitric oxide and prostaglandin E2, as well as the expression of inducible NO synthetase and cyclooxygenase-2. In addition, expressions of inflammatory genes and mediators, such as tumor necrosis factor-α, interleukin-6, and interleukin-1β, were suppressed. LTP showed anti-inflammatory activity similar to LT, but better anti-inflammatory activity in all the experiments, while also inhibiting mitogen-activated protein kinase and nuclear factor-kappa B more effectively than LT. At a concentration of 10 μM, LTP showed differences of 2.1 to 44.5% in the activity compared to LT; it also showed higher anti-inflammatory activity. Our findings suggest that LTP has stronger anti-inflammatory activity than LT.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wuyang Huang ◽  
Ky Young Cho ◽  
Di Meng ◽  
W. Allan Walker

AbstractAn excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA’s effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


2020 ◽  
Vol 175 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Nivedita Banerjee ◽  
Hui Wang ◽  
Gangduo Wang ◽  
M Firoze Khan

Abstract Trichloroethene (trichloroethylene, TCE) and one of its reactive metabolites dichloroacetyl chloride (DCAC) are associated with the induction of autoimmunity in MRL+/+ mice. Although oxidative stress plays a major role in TCE-/DCAC-mediated autoimmunity, the underlying molecular mechanisms still need to be delineated. Nuclear factor (erythroid-derived 2)-like2 (Nrf2) is an oxidative stress-responsive transcription factor that binds to antioxidant responsive element (ARE) and provides protection by regulating cytoprotective and antioxidant gene expression. However, the potential of Nrf2 in the regulation of TCE-/DCAC-mediated autoimmunity is not known. This study thus focused on establishing the role of Nrf2 and consequent inflammatory responses in TCE-/DCAC-mediated autoimmunity. To achieve this, we pretreated Kupffer cells (KCs) or T cells with/without tert-butylhydroquinone (tBHQ) followed by treatment with DCAC. In both KCs and T cells, DCAC treatment significantly downregulated Nrf2 and HO-1 expression along with induction of Keap-1 and caspase-3, NF-κB (p65), TNF-α, and iNOS, whereas pretreatment of these cells with tBHQ attenuated these responses. The in vitro findings were further verified in vivo by treating female MRL+/+ mice with TCE along with/without sulforaphane. TCE exposure in mice also led to reduction in Nrf2 and HO-1 but increased phospho-NF-κB (p-p65) and iNOS along with increased anti-dsDNA antibodies. Interestingly, sulforaphane treatment led to amelioration of TCE-mediated effects, resulting in Nrf2 activation and reduction in inflammatory and autoimmune responses. Our results show that TCE/DCAC mediates an impairment in Nrf2 regulation. Attenuation of TCE-mediated autoimmunity via activation of Nrf2 supports that antioxidants sulforaphane/tBHQ could be potential therapeutic agents for autoimmune diseases.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 450
Author(s):  
Kensuke Mitsunari ◽  
Yasuyoshi Miyata ◽  
Tomohiro Matsuo ◽  
Yuta Mukae ◽  
Asato Otsubo ◽  
...  

Benign prostatic hyperplasia (BPH) is arguably the most common benign disease among men. This disease is often associated with lower urinary tract symptoms (LUTS) in men and significantly decreases the quality of life. Polyphenol consumption reportedly plays an important role in the prevention of many diseases, including BPH. In recent years, in addition to disease prevention, many studies have reported the efficacy and safety of polyphenol treatment against various pathological conditions in vivo and in vitro. Furthermore, numerous studies have also revealed the molecular mechanisms of the antioxidant and anti-inflammatory effects of polyphenols. We believe that an improved understanding of the detailed pharmacological roles of polyphenol-induced activities at a molecular level is important for the prevention and treatment of BPH. Polyphenols are composed of many members, and their biological roles differ. In this review, we first provide information regarding the pathological roles of oxidative stress and inflammation in BPH. Next, the antioxidant and anti-inflammatory effects of polyphenols, including those of flavonoids and non-flavonoids, are discussed. Finally, we talk about the results and limitations of previous clinical trials that have used polyphenols in BPH, with particular focus on their molecular mechanisms of action.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Helong Zhao ◽  
Appakkudal Anand ◽  
Ramesh Ganju

Abstract Introduction: Lipopolysaccharide (LPS) is one of the critical factors which induce endothelial inflammation during the pathogenesis of atherosclerosis, endocarditis and sepsis shock induced heart injury. The secretory Slit2 protein and its endothelial receptors Robo1 and Robo4 have been shown to regulate mobility and permeability of endothelial cells, which could be functional in regulating LPS induced endothelial inflammation. Hypothesis: We hypothesized that in addition to regulating permeability and migration of endothelial cells, Slit2-Robo1/4 signaling might regulate other LPS-induced endothelial inflammatory responses. Methods and Results: Using Human Umbilical Vein Endothelial Cells (HUVEC) culture, we observed that Slit2 treatment suppressed LPS-induced secretion of pro-inflammatory cytokines (including GM-CSF), cell adhesion molecule upregulation and monocyte (THP-1 cell) adhesion. With siRNA knock down techniques, we further confirmed that this anti-inflammatory effect is mediated by the interaction of Slit2 with its dominant receptor in endothelial cells, Robo4, though the much lesser expressed minor receptor Robo1 is pro-inflammatory. Our signaling studies showed that downstream of Robo4, Slit2 suppressed inflammatory gene expression by inhibiting the Pyk2 - NF-kB pathway following LPS-TLR4 interaction. In addition, Slit2 can induce a positive feedback to its expression and downregulate the pro-inflammatory Robo1 receptor via mediation of miR-218. Moreover, both in in vitro studies using HUVEC and in vivo mouse model studies indicated that LPS also causes endothelial inflammation by downregulating the anti-inflammatory Slit2 and Robo4 and upregulating the pro-inflammatory Robo1 during endotoxemia, especially in mouse arterial endothelial cells and whole heart. Conclusions: Slit2-Robo1/4 signaling is important in regulation of LPS induced endothelial inflammation, and LPS in turn causes inflammation by interfering with the expression of Slit2, Robo1 and Robo4. This implies that Slit2-Robo1/4 is a key regulator of endothelial inflammation and its dysregulation during endotoxemia is a novel mechanism for LPS induced cardiovascular pathogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rodrigo Cuiabano Paes Leme ◽  
Raquel Bandeira da Silva

It has been demonstrated that some non-steroidal anti-inflammatory drugs (NSAIDs), like acetylsalicylic acid, diclofenac, and ibuprofen, have anti-biofilm activity in concentrations found in human pharmacokinetic studies, which could fuel an interest in repurposing these well tolerated drugs as adjunctive therapies for biofilm-related infections. Here we sought to review the currently available data on the anti-biofilm activity of NSAIDs and its relevance in a clinical context. We performed a systematic literature review to identify the most commonly tested NSAIDs drugs in the last 5 years, the bacterial species that have demonstrated to be responsive to their actions, and the emergence of resistance to these molecules. We found that most studies investigating NSAIDs’ activity against biofilms were in vitro, and frequently tested non-clinical bacterial isolates, which may not adequately represent the bacterial populations that cause clinically-relevant biofilm-related infections. Furthermore, studies concerning NSAIDs and antibiotic resistance are scarce, with divergent outcomes. Although the potential to use NSAIDs to control biofilm-related infections seems to be an exciting avenue, there is a paucity of studies that tested these drugs using appropriate in vivo models of biofilm infections or in controlled human clinical trials to support their repurposing as anti-biofilm agents.


Sign in / Sign up

Export Citation Format

Share Document