scholarly journals Genome-culture coevolution promotes rapid divergence in the killer whale

2016 ◽  
Author(s):  
Andrew Foote ◽  
Nagarjun Vijay ◽  
Maria Avila-Arcos ◽  
Robin Baird ◽  
John Durban ◽  
...  

The interaction between ecology, culture and genome evolution remains poorly understood. Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and postzygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step toward an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
André Flores-Bello ◽  
Neus Font-Porterias ◽  
Julen Aizpurua-Iraola ◽  
Sara Duarri-Redondo ◽  
David Comas

Abstract Background The general picture of human genetic variation has been vastly depicted in the last years, yet many populations remain broadly understudied. In this work, we analyze for the first time the Merchero population, a Spanish minority ethnic group that has been scarcely studied and historically persecuted. Mercheros have been roughly characterised by an itinerant history, common traditional occupations, and the usage of their own language. Results Here, we examine the demographic history and genetic scenario of Mercheros, by using genome-wide array data, whole mitochondrial sequences, and Y chromosome STR markers from 25 individuals. These samples have been complemented with a wide-range of present-day populations from Western Eurasia and North Africa. Our results show that the genetic diversity of Mercheros is explained within the context of the Iberian Peninsula, evidencing a modest signal of Roma admixture. In addition, Mercheros present low genetic isolation and intrapopulation heterogeneity. Conclusions This study represents the first genetic characterisation of the Merchero population, depicting their fine-scale ancestry components and genetic scenario within the Iberian Peninsula. Since ethnicity is not only influenced by genetic ancestry but also cultural factors, other studies from multiple disciplines are needed to further explore the Merchero population. As with Mercheros, there is a considerable gap of underrepresented populations and ethnic groups in publicly available genetic data. Thus, we encourage the consideration of more ethnically diverse population panels in human genetic studies, as an attempt to improve the representation of human populations and better reconstruct their fine-scale history.


Author(s):  
Andy Foote ◽  
Rebecca Hooper ◽  
Alana Alexander ◽  
Robin Baird ◽  
Charles Baker ◽  
...  

Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically the probability of inbreeding mediated by mating system and/or population demography. Here, we investigate whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global dataset of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstruct demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We find a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (<1Mb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (>1.5 Mb) were found in low latitude populations and populations of known conservation concern, including a Scottish population, for which 37.8% of the autosomes comprised of ROH >1.5 Mb in length.


2020 ◽  
Author(s):  
Rebecca Hooper ◽  
Laurent Excoffier ◽  
Karin A. Forney ◽  
M. Thomas P. Gilbert ◽  
Michael D. Martin ◽  
...  

SUMMARYRuns of homozygosity (ROH) occur when offspring receive the same ancestral haplotype from both parents, and, accordingly, reduce individual heterozygosity. Their distribution throughout the genome contains information on the probability of inbreeding mediated by mating system and population demography. Here, we investigate variation in killer whale demographic history as reflected in genome-wide heterozygosity, using a global dataset of 26 genomes. We find an overall pattern of lower heterozygosity in genomes sampled at high latitudes, with hundreds of short ROH (< 1Mbp) reflecting high background relatedness due to coalescence of haplotypes during bottlenecks associated with founder events during post-glacial range expansions. Across most of the species’ range, intermediate length ROH (1-10Mb) revealed long-term inbreeding in 22 of the 26 sampled killer whale genomes, consistent with the high social philopatry observed in all populations studied to date. Inbreeding coefficients (FROH) were comparable to those reported in other taxa with long-term low population size, such as bonobos and the Native American Karitiana of the Brazilian Amazon. The extreme outlier in this dataset, a Scottish killer whale, was homozygous over one-third of the autosomes (41.6%) with a distinct distribution of ROH length, indicating generations of inbreeding. This exceeds autozygosity in emblematic examples of long-term inbreeding, such as the Altai Neanderthal, and eastern lowland and mountain gorillas. The fate of this Scottish killer whale population, in which no calves have been born in over two decades, may be inextricably linked to its demographic history and consequential inbreeding depression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyung Seok Kim ◽  
Kevin J. Roe

AbstractDetailed information on species delineation and population genetic structure is a prerequisite for designing effective restoration and conservation strategies for imperiled organisms. Phylogenomic and population genomic analyses based on genome-wide double digest restriction-site associated DNA sequencing (ddRAD-Seq) data has identified three allopatric lineages in the North American freshwater mussel genus Cyprogenia. Cyprogenia stegaria is restricted to the Eastern Highlands and displays little genetic structuring within this region. However, two allopatric lineages of C. aberti in the Ozark and Ouachita highlands exhibit substantial levels (mean uncorrected FST = 0.368) of genetic differentiation and each warrants recognition as a distinct evolutionary lineage. Lineages of Cyprogenia in the Ouachita and Ozark highlands are further subdivided reflecting structuring at the level of river systems. Species tree inference and species delimitation in a Bayesian framework using single nucleotide polymorphisms (SNP) data supported results from phylogenetic analyses, and supports three species of Cyprogenia over the currently recognized two species. A comparison of SNPs generated from both destructively and non-destructively collected samples revealed no significant difference in the SNP error rate, quality and amount of ddRAD sequence reads, indicating that nondestructive or trace samples can be effectively utilized to generate SNP data for organisms for which destructive sampling is not permitted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raju Bheemanahalli ◽  
Montana Knight ◽  
Cherryl Quinones ◽  
Colleen J. Doherty ◽  
S. V. Krishna Jagadish

AbstractHigh night temperatures (HNT) are shown to significantly reduce rice (Oryza sativa L.) yield and quality. A better understanding of the genetic architecture of HNT tolerance will help rice breeders to develop varieties adapted to future warmer climates. In this study, a diverse indica rice panel displayed a wide range of phenotypic variability in yield and quality traits under control night (24 °C) and higher night (29 °C) temperatures. Genome-wide association analysis revealed 38 genetic loci associated across treatments (18 for control and 20 for HNT). Nineteen loci were detected with the relative changes in the traits between control and HNT. Positive phenotypic correlations and co-located genetic loci with previously cloned grain size genes revealed common genetic regulation between control and HNT, particularly grain size. Network-based predictive models prioritized 20 causal genes at the genetic loci based on known gene/s expression under HNT in rice. Our study provides important insights for future candidate gene validation and molecular marker development to enhance HNT tolerance in rice. Integrated physiological, genomic, and gene network-informed approaches indicate that the candidate genes for stay-green trait may be relevant to minimizing HNT-induced yield and quality losses during grain filling in rice by optimizing source-sink relationships.


Author(s):  
Zhiqiang Sha ◽  
Dick Schijven ◽  
Amaia Carrion-Castillo ◽  
Marc Joliot ◽  
Bernard Mazoyer ◽  
...  

AbstractLeft–right hemispheric asymmetry is an important aspect of healthy brain organization for many functions including language, and it can be altered in cognitive and psychiatric disorders. No mechanism has yet been identified for establishing the human brain’s left–right axis. We performed multivariate genome-wide association scanning of cortical regional surface area and thickness asymmetries, and subcortical volume asymmetries, using data from 32,256 participants from the UK Biobank. There were 21 significant loci associated with different aspects of brain asymmetry, with functional enrichment involving microtubule-related genes and embryonic brain expression. These findings are consistent with a known role of the cytoskeleton in left–right axis determination in other organs of invertebrates and frogs. Genetic variants associated with brain asymmetry overlapped with those associated with autism, educational attainment and schizophrenia. Comparably large datasets will likely be required in future studies, to replicate and further clarify the associations of microtubule-related genes with variation in brain asymmetry, behavioural and psychiatric traits.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Chun Yu Li ◽  
Tian Mi Yang ◽  
Ru Wei Ou ◽  
Qian Qian Wei ◽  
Hui Fang Shang

Abstract Background Epidemiological and clinical studies have suggested comorbidity between amyotrophic lateral sclerosis (ALS) and autoimmune disorders. However, little is known about their shared genetic architecture. Methods To examine the relation between ALS and 10 autoimmune diseases, including asthma, celiac disease (CeD), Crohn’s disease (CD), inflammatory bowel disease (IBD), multiple sclerosis (MS), psoriasis, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), and ulcerative colitis (UC), and identify shared risk loci, we first estimated the genetic correlation using summary statistics from genome-wide association studies, and then analyzed the genetic enrichment leveraging the conditional false discovery rate statistical method. Results We identified a significant positive genetic correlation between ALS and CeD, MS, RA, and SLE, as well as a significant negative genetic correlation between ALS and IBD, UC, and CD. Robust genetic enrichment was observed between ALS and CeD and MS, and moderate enrichment was found between ALS and UC and T1D. Thirteen shared genetic loci were identified, among which five were suggestively significant in another ALS GWAS, namely rs3828599 (GPX3), rs3849943 (C9orf72), rs7154847 (G2E3), rs6571361 (SCFD1), and rs9903355 (GGNBP2). By integrating cis-expression quantitative trait loci analyses in Braineac and GTEx, we further identified GGNBP2, ATXN3, and SLC9A8 as novel ALS risk genes. Functional enrichment analysis indicated that the shared risk genes were involved in four pathways including membrane trafficking, vesicle-mediated transport, ER to Golgi anterograde transport, and transport to the Golgi and subsequent modification. Conclusions Our findings demonstrate a specific genetic correlation between ALS and autoimmune diseases and identify shared risk loci, including three novel ALS risk genes. These results provide a better understanding for the pleiotropy of ALS and have implications for future therapeutic trials.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 832
Author(s):  
Nina Moravčíková ◽  
Radovan Kasarda ◽  
Radoslav Židek ◽  
Luboš Vostrý ◽  
Hana Vostrá-Vydrová ◽  
...  

This study focused on the genomic differences between the Czechoslovakian wolfdog (CWD) and its ancestors, the Grey wolf (GW) and German Shepherd dog. The Saarloos wolfdog and Belgian Shepherd dog were also included to study the level of GW genetics retained in the genome of domesticated breeds. The dataset consisted of 131 animals and 143,593 single nucleotide polymorphisms (SNPs). The effects of demographic history on the overall genome structure were determined by screening the distribution of the homozygous segments. The genetic variance distributed within and between groups was quantified by genetic distances, the FST index, and discriminant analysis of principal components. Fine-scale population stratification due to specific morphological and behavioural traits was assessed by principal component and factorial analyses. In the CWD, a demographic history effect was manifested mainly in a high genome-wide proportion of short homozygous segments corresponding to a historical load of inbreeding derived from founders. The observed proportion of long homozygous segments indicated that the inbreeding events shaped the CWD genome relatively recently compared to other groups. Even if there was a significant increase in genetic similarity among wolf-like breeds, they were genetically separated from each other. Moreover, this study showed that the CWD genome carries private alleles that are not found in either wolves or other dog breeds analysed in this study.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Nicole M. Wanner ◽  
Mathia Colwell ◽  
Chelsea Drown ◽  
Christopher Faulk

Abstract Background Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is responsive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothesized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epigenome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA methylation for direct and developmental exposure, respectively. Results F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thousands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for neurogenesis, substance use phenotypes, and other psychologically relevant terms. Conclusions These findings demonstrate for the first time that despite positive effects of direct exposure, developmental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.


Sign in / Sign up

Export Citation Format

Share Document