scholarly journals Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus has anti-aging effects in Drosophila melanogaster

2016 ◽  
Author(s):  
Vibha Dwivedi ◽  
Subhash C. Lakhotia

AbstractEthnopharmacological relevanceAmalaki Rasayana (AR) is a common Ayurvedic herbal formulation of Phyllanthus emblica fruits and other ingredients and is used for general good health and healthy aging. We earlier reported it to improve life history traits and to suppress neurodegeneration as well as induced apoptosis in Drosophila.Aim of the studyTo examine effects of dietary AR supplement on cell stress responses in Drosophila melanogaster.Materials and methodsLarvae/flies, reared on normal food or on that supplemented with 0.5% (w/v) AR, were exposed to crowding, thermal or oxidative stress and examined for survival, stress tolerance and levels of lipid peroxides, SOD and HSPs.ResultsWild type larvae/flies reared on AR supplemented food survived the various cell stresses much better than those reared on normal food. AR-fed mutant park13 or DJ-1βDelta93 (Parkinson’s disease model) larvae, however, showed only partial or no protection, respectively, against paraquat-induced oxidative stress, indicating essentiality of DJ-1β for AR mediated oxidative stress tolerance. AR feeding reduced the accumulation of reactive oxygen species (ROS) and lipid peroxidation even in aged (35 day old) wild type flies while enhancing superoxide dismutase (SOD) activity. We show for the first time that while Hsp70 or Hsp83 expression under normal or stress conditions was not differentially affected by AR feeding, Hsp27 levels were elevated in AR fed wild type control as well as heat shocked larvae. Therefore, besides the known anti-oxidant activity of Phyllanthus emblica fruits, dietary AR also enhances cellular levels of Hsp27.ConclusionIn the context of the reported “anti-aging” and “healthy-aging” effects of AR, the present in vivo study on a model organisms shows that AR feeding significantly improves tolerance to a variety of cell stresses through reduced ROS and lipid peroxidation and enhanced SOD activity and Hsp27. Such improved cellular defences following dietary AR provide better homeostasis and thereby improve the life-span and quality of organism’s life.

2018 ◽  
Vol 8 (6-s) ◽  
pp. 83-88
Author(s):  
B.P. Renuka Prasad ◽  
J.S. Ashadevi

Stress is a state of mental or emotional strain of an individual.  In recent years nutritional antioxidants study have gain more attention in minimizing the stress like oxidative stress. The stress resistant ability in an organism can be increased by the supplementation of herbal resources. However, few plant extracts are known to have stress resistant ability and increases the tolerance capacity. Plants containing high antioxidant and other bioactive compounds promote tolerance capacity. An antioxidant rich plant has been proved to decreases the   lipid peroxidation. Here, we investigated the potential protective effect of ethanolic extract of Withania somnifera (WS), against Paraquat toxicity on stress tolerance capacity using Drosophila melanogaster. Wild-type fruit flies of Oregon-K strain were fed with standard food media with 1mg/ml and 10 mg/ml of WS.  The oxidative stress was induced by exposing the extract supplemented flies to Paraquat (20 mM).  The stress tolerance capacity of flies was measured by subjecting to desiccation and oxidative stresses. Further, locomotor activity, lipid peroxidation were also studied along with the quantification of triglycerides, glycogen in WS fed flies under stress conditions. Our result reveals that PQ induced WS fed flies showed greater survivability, better locomotor ability when compared to PQ induced flies.WS fed flies increases about 73.55% of resistance ability under oxidative conditions and increased by 59.15% under desiccation than PQ induced flies. WS was more effective in protecting against Paraquat toxicity. The flies fed with high dose of WS (10mg/ml) showed greater improvement of the tolerance ability when subjected to desiccation and oxidative stresses. Further, the data on biochemical analysis reveals that lipid peroxidation activities were found to be significantly low and the triglyceride as well as glycogen quantities were found to be significantly high in WS fed flies compare to –ve control under both desiccation and oxidative stress conditions.  Together, these findings suggest that WS promotes stress resistant ability by modulating metabolism and reducing oxidative damage. Keywords: Drosophila melanogaster, Withania somnifera, Oxidative stress assay, Desiccation Assay, Negative Geotaxis, 


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Sidra Perveen ◽  
Shalu Kumari ◽  
Himali Raj ◽  
Shahla Yasmin

Abstract Background Fluoride may induce oxidative stress and apoptosis. It may also lead to neurobehavioural defects including neuromuscular damage. The present study aimed to explore the effects of sub lethal concentrations of sodium fluoride (NaF) on the lifespan and climbing ability of Drosophila melanogaster. In total, 0.6 mg/L and 0.8 mg/L of NaF were selected as sublethal concentrations of NaF for the study. Lifespan was measured and climbing activity assay was performed. Results The study showed significant decrease in lifespan of flies treated with fluoride. With increasing age, significant reduction in climbing activity was observed in flies treated with sodium fluoride as compared to normal (control) flies. Flies treated with tulsi (Ocimum sanctum) and NaF showed increase in lifespan and climbing activity as compared to those treated with NaF only. Lipid peroxidation assay showed significant increase in malondialdehyde (MDA) values in the flies treated with NaF as compared to control. The MDA values decreased significantly in flies treated with tulsi mixed with NaF. Conclusions The results indicate that exposure to sub lethal concentration of NaF may cause oxidative stress and affect the lifespan and climbing activity of D. melanogaster. Tulsi extract may help in reducing the impact of oxidative stress and toxicity caused by NaF.


2004 ◽  
Vol 287 (3) ◽  
pp. H1141-H1148 ◽  
Author(s):  
Jon J. Andresen ◽  
Frank M. Faraci ◽  
Donald D. Heistad

MnSOD is the only mammalian isoform of SOD that is necessary for life. MnSOD−/− mice die soon after birth, and MnSOD+/− mice are more susceptible to oxidative stress than wild-type (WT) mice. In this study, we examined vasomotor function responses in aortas of MnSOD+/− mice under normal conditions and during oxidative stress. Under normal conditions, contractions to serotonin (5-HT) and prostaglandin F2α (PGF2α), relaxation to ACh, and superoxide levels were similar in aortas of WT and MnSOD+/− mice. The mitochondrial inhibitor antimycin A reduced contraction to PGF2α and impaired relaxation to ACh to a similar extent in aortas of WT and MnSOD+/− mice. The Cu/ZnSOD and extracellular SOD inhibitor diethyldithiocarbamate (DDC) paradoxically enhanced contraction to 5-HT and superoxide more in aortas of WT mice than in MnSOD+/− mice. DDC impaired relaxation to ACh and reduced total SOD activity similarly in aortas of both genotypes. Tiron, a scavenger of superoxide, normalized contraction to 5-HT, relaxation to ACh, and superoxide levels in DDC-treated aortas of WT and MnSOD+/− mice. Hypoxia, which reportedly increases superoxide, reduced contractions to 5-HT and PGF2α similarly in aortas of WT and MnSOD+/− mice. The vasomotor response to acute hypoxia was similar in both genotypes. In summary, under normal conditions and during acute oxidative stress, vasomotor function is similar in WT and MnSOD+/− mice. We speculate that decreased mitochondrial superoxide production may preserve nitric oxide bioavailability during oxidative stress.


2016 ◽  
Vol 46 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Marcos André Nohatto ◽  
Dirceu Agostinetto ◽  
Ana Claudia Langaro ◽  
Claudia de Oliveira ◽  
Queli Ruchel

ABSTRACT Understanding the physiological defense behavior of plants subjected to herbicide application may help to identify products with higher or lower capacity to cause oxidative stress in crops. This study aimed at evaluating the effect of herbicides in the antioxidant activity of rice plants. The experimental design was completely randomized, with six replications. Treatments consisted of the herbicides bentazon (photosystem II inhibitor; 960 g ha-1), penoxsulam (acetolactate synthase inhibitor; 60 g ha-1), cyhalofop-butyl (acetyl coenzyme-A carboxylase inhibitor; 315 g ha-1) and a control. After the herbicides application, samples of rice shoots were collected at 12, 24, 48 and 96 hours after application (HAA). The components evaluated were hydrogen peroxide (H2O2), lipid peroxidation and activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Bentazon (up to 24 HAA) and penoxsulam (48 and 96 HAA) reduced the CAT activity. Moreover, these herbicides increased the levels of H2O2, lipid peroxidation and SOD activity, indicating a condition of oxidative stress in rice plants. The cyhalofop-butyl herbicide did not alter the antioxidant activity, showing that it causes less stress to the crop.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5136 ◽  
Author(s):  
Matheus Marcon ◽  
Ricieri Mocelin ◽  
Adrieli Sachett ◽  
Anna M. Siebel ◽  
Ana P. Herrmann ◽  
...  

Background The enriched environment (EE) is a laboratory housing model that emerged from efforts to minimize the impact of environmental conditions on laboratory animals. Recently, we showed that EE promoted positive effects on behavior and cortisol levels in zebrafish submitted to the unpredictable chronic stress (UCS) protocol. Here, we expanded the characterization of the effects of UCS protocol by assessing parameters of oxidative status in the zebrafish brain and reveal that EE protects against the oxidative stress induced by chronic stress. Methods Zebrafish were exposed to EE (21 or 28 days) or standard housing conditions and subjected to the UCS protocol for seven days. Oxidative stress parameters (lipid peroxidation (TBARS), reactive oxygen species (ROS) levels, non-protein thiol (NPSH) and total thiol (SH) levels, superoxide dismutase (SOD) and catalase (CAT) activities were measured in brain homogenate. Results Our results revealed that UCS increased lipid peroxidation and ROS levels, while decreased NPSH levels and SOD activity, suggesting oxidative damage. EE for 28 days prevented all changes induced by the UCS protocol, and EE for 21 days prevented the alterations on NPSH levels, lipid peroxidation and ROS levels. Both EE for 21 or 28 days increased CAT activity. Discussion Our findings reinforce the idea that EE exerts neuromodulatory effects in the zebrafish brain. EE promoted positive effects as it helped maintain the redox homeostasis, which may reduce the susceptibility to stress and its oxidative impact.


2014 ◽  
Vol 66 (3) ◽  
pp. 1075-1081
Author(s):  
Ivan Simic ◽  
Violeta Iric-Cupic ◽  
Rada Vucic ◽  
Marina Petrovic ◽  
Violeta Mladenovic ◽  
...  

The aim of the present study was to evaluate the subchronic effects of 3,4-methylenedioxymethamphetamine on several oxidative stress markers: index of lipid peroxidation (ILP), superoxide dismutase (SOD) activity, superoxide radical (O2.-) levels, and reduced glutathione (GSH) levels in the frontal cortex, striatum and hippocampus of the rat. The study included 64 male Wistar rats (200-250g). The animals were treated per os with of 5, 10, or 20 mg/kg of 3,4-methylenedioxymethamphetamine (MDMA) every day for 15 days. The subchronic administration of MDMA resulted in an increase in ILP, SOD and O2.-, and a decrease in GSH, from which we conclude that oxidative stress was induced in rat brain.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Harshi Prasadini Gunawardena ◽  
Renuka Silva ◽  
Ramiah Sivakanesan ◽  
Pathmasiri Ranasinghe ◽  
Prasad Katulanda

Glycaemic control is the main focus of managing diabetes and its complications. Hyperglycaemia induces oxidative stress favouring cellular damage and subsequent diabetic complications. The present study was conducted to compare the plasma total antioxidant capacity (TAC) and individual antioxidant marker antioxidant status of type 2 diabetics (T2D) with good ((+) GC) and poor ((-) GC) glycaemic control with prediabetic (PDM) and normoglycaemic (NG) individuals. T2D (n=147), PDM (n=47), and NGC (n=106) were recruited as subjects. T2D and PDM had lower plasma TAG than NG subjects. T2D and PDM had significantly higher GPx activity and plasma MDA concentrations than NG. PDM showed the highest SOD activity. T2D (-) GC showed significantly elevated GPx activity and higher MDA level and significantly lower SOD activity among all study groups. Lower plasma TAC and higher plasma MDA indicate the presence of oxidative stress in T2D and PDM. Elevated GPx activity in T2D, PDM, and particularly in T2D (-) GC suggests a compensatory response to counteract excess lipid peroxidation in the hyperglycaemic state. Decline in SOD activity advocates the presence of glycation and excess lipid peroxidation in T2D.


2012 ◽  
Vol 24 (1) ◽  
pp. 199
Author(s):  
S. Di Francesco ◽  
M. Rubessa ◽  
L. Boccia ◽  
M. De Blasi ◽  
P. Stiuso ◽  
...  

In vitro-produced embryos are less viable than their in vivo counterparts. It is known that the developmental speed is a reliable marker of embryo viability. One of the major factors impairing in vitro embryo development is oxidative stress. The aim of the study was to evaluate oxidative stress and lipid peroxidation in bovine in vitro-produced embryos that reached different developmental stages at the end of culture. Abattoir-derived oocytes were matured in vitro in TCM-199 with 15% bovine serum, 0.5 μg mL–1 of FSH, 5 μg mL–1 of LH, 0.8 mM L-glutamine and 50 mg mL–1 of gentamicin. Mature cumulus–oocyte complexes (COC) were fertilized in Tyrode's modified medium, supplemented by 5.3 SI mL–1 of heparin, 30 μM penicillamine, 15 μM hypotaurine, 1 μM epinephrine and 1% of bovine serum. Both in vitro maturation and IVF were carried out at 39°C and 5% CO2 in air. After 20 to 22 h of gamete co-incubation, presumptive zygotes were denuded and cultured in SOF for 7 days at 39°C under humidified air with 5% CO2, 7% O2 and 88% N2 in air. At the end of culture, embryos were assessed according to the stage of development as tight morulae (TM), early blastocysts (eBl), blastocysts (Bl), expanded blastocysts (XBl) and hatched blastocysts (HBl). For each stage of development, an average of 20 embryos were used to determine manganese superoxide dismutase (MnSOD) activity and levels of nitric oxide (NO2–) and thiobarbituric acid-reactive substances (TBARS). The SOD activity was determined by a colourimetric method (Caraglia M et al. 2011 Cell Death Dis. 2, 150, doi:10.1038/cddis.2011.34) whereas NO2– and TBARS were measured by a spectrophotometric method (Balestrieri et al. 2011 J. Cell. Physiol. doi:10.1002/jcp.22874). Data were analysed by t-test. Greater (P < 0.05) MnSOD activity was observed in faster developing embryos (i.e. XBl and HBl) compared with slower ones (i.e. TM, eBl and Bl; 0.46 ± 0.04, 0.46 ± 0.03, 0.14 ± 0.01, 1.66 ± 0.01 and 3.26 ± 0.3 U μg–1 of protein, in TM, eBl, Bl, XBl and HBl, respectively). At the same time, XBl and HBl showed the lowest NO2– levels. However, NO2– values were lower in TM compared with eBl and Bl (0.04 ± 0.002, 0.07 ± 0.005, 0.06 ± 0.003, 0.01 ± 0.002 and 0.01 ± 0.001 nM μg–1 of protein, in TM, eBl, Bl, XBl and HBl, respectively). Similarly to NO2–, TBARS levels were lower in XBl and HBl compared with the other stages (0.0059 ± 0.002, 0.009 ± 0.003, 0.006 ± 0.002, 0.001 ± 0.0001 and 0.0009 ± 0.0002 μM μg–1 of protein, in TM, eBl, Bl, XBl and HBl, respectively). In conclusion, these results clearly indicate developmental stage-dependent changes in MnSOD activity and levels of NO2– and TBARS, suggesting that oxidative stress and lipid peroxidation are reduced in faster developing embryos.


2014 ◽  
Vol 73 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Sidney C. Praxedes ◽  
Fábio M. Damatta ◽  
Claudivan F. De Lacerda ◽  
José T. Prisco ◽  
Enéas Gomes-Filho

Abstract We have previously demonstrated that salt tolerance in cowpea could be associated with lesser impairments of the photosynthetic capacity. Taking into account that photosynthesis is the main sink for reducing power consumption, our central working hypothesis is that a salt-sensitive cultivar is more prone to suffer from oxidative stress. We analyzed the long-term effects of salt stress on oxidative damage and protection against reactive oxygen species in both leaves and roots of a salt-tolerant (Pitiúba) and a salt-sensitive (TVu) cowpea cultivar. Two salt treatments (0 and 75 mM NaCl) were applied to 10-day-old plants grown in nutrient solution for 24 days. Significant salt-induced oxidative damage as demonstrated via increases in malondialdehyde concentration were noted, particularly in leaves at the end of the experiment, although such damage was found earlier in Pitiúba. In salt-stressed plants, superoxide dismutase (SOD) activity increased only in Pitiúba at 24 days from the start of salt additions (DSSA). In Pitiúba, catalase (CAT) was not significantly affected by the treatments, whereas in TVu its activity was dramatically lower in salt-stressed plants at 10DSSAonwards. In general salt stress led to significant increases, much more pronounced in ascorbate peroxidase (APX), glutathione reductase (GR) and guaiacol peroxidase (GPX), at the end of the experiment in both cultivars. In roots, salt-induced increases in enzyme activities were particularly noted at 24 DSSA, as found for SOD and APX in Pitiúba, CAT in TVu and GR and GPX in both cultivars. Therefore, in contrast to our expectations, the present results argue, to a great extent, against a functional link between salt stress tolerance and the expression of the antioxidant system. We also demonstrated that leaves and roots should be evaluated for a full assessment of whole plant acclimation to salt stress.


Crustaceana ◽  
2011 ◽  
Vol 84 (10) ◽  
pp. 1197-1210 ◽  

AbstractThe objective of this study was to determine the effect of sublethal copper concentrations on certain antioxidant enzymes and lipid peroxidation products in the postlarvae (PL) of Penaeus indicus when subjected to short- and long-term exposure in the laboratory. The PL of P. indicus were exposed to 0.1641 ppm (sublethal) copper for a period of 30 days along with a parallel control. Sampling was carried out at six different time intervals, i.e., 24, 48, and 96 hrs (shortterm), and 10, 20, and 30 days (long-term). Variations in the activity of the antioxidant enzymes, namely, catalase (CAT) and superoxide dismutase (SOD), as well as lipid peroxidation products (LPP) were measured as biomarkers of metal toxicity. Our results showed a significant (P < 0.05) increase in LPP (indicating oxidative stress) and CAT activity (indicating an adaptive response of the PL for protection against oxidative stress) in the exposed PL for all periods of exposure. However, SOD activity significantly (P < 0.05) decreased on 20 and 30 days exposure, indicating susceptibility of the PL to oxidative stress upon long-term exposure. Therefore, CAT can serve as a better biomarker of oxidative stress than SOD to long-term copper toxicity. Our results indicate that copper contamination causes oxidative stress even at sublethal doses in Penaeus indicus PL, which can thus be used as a potential biomarker of copper toxicity for long-term monitoring of coastal marine ecosystems.


Sign in / Sign up

Export Citation Format

Share Document