scholarly journals Poor Glycaemic Control Is Associated with Increased Lipid Peroxidation and Glutathione Peroxidase Activity in Type 2 Diabetes Patients

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Harshi Prasadini Gunawardena ◽  
Renuka Silva ◽  
Ramiah Sivakanesan ◽  
Pathmasiri Ranasinghe ◽  
Prasad Katulanda

Glycaemic control is the main focus of managing diabetes and its complications. Hyperglycaemia induces oxidative stress favouring cellular damage and subsequent diabetic complications. The present study was conducted to compare the plasma total antioxidant capacity (TAC) and individual antioxidant marker antioxidant status of type 2 diabetics (T2D) with good ((+) GC) and poor ((-) GC) glycaemic control with prediabetic (PDM) and normoglycaemic (NG) individuals. T2D (n=147), PDM (n=47), and NGC (n=106) were recruited as subjects. T2D and PDM had lower plasma TAG than NG subjects. T2D and PDM had significantly higher GPx activity and plasma MDA concentrations than NG. PDM showed the highest SOD activity. T2D (-) GC showed significantly elevated GPx activity and higher MDA level and significantly lower SOD activity among all study groups. Lower plasma TAC and higher plasma MDA indicate the presence of oxidative stress in T2D and PDM. Elevated GPx activity in T2D, PDM, and particularly in T2D (-) GC suggests a compensatory response to counteract excess lipid peroxidation in the hyperglycaemic state. Decline in SOD activity advocates the presence of glycation and excess lipid peroxidation in T2D.

2018 ◽  
Vol 38 (4) ◽  
pp. 434-445 ◽  
Author(s):  
D Rašić ◽  
V Micek ◽  
MS Klarić ◽  
M Peraica

Ochratoxin A (OTA) and citrinin (CTN) commonly coexist in grains. Aiming to evaluate oxidative stress in OTA + CTN toxicity, male Wistar rats were orally treated with two doses of OTA (0.125 and 0.250 mg kg−1 of body weight (b.w.)), CTN (2 mg kg−1 of b.w.) and resveratrol (RSV; 20 mg kg−1 of b.w.) and combined daily during 3 weeks. Protein carbonyl concentrations were measured in kidneys and liver; catalytic activity of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) level in plasma, kidneys and liver, while malondialdehyde (MDA) concentration was measured in plasma, kidneys, liver and urine. Mycotoxin treatment significantly increased MDA concentration in plasma and kidney and decreased SOD activity in the liver. Rats treated with CTN and OTA125 + CTN had lower plasma GPx activity. Concentration of GSH in the kidney and protein carbonyls in the kidney and liver as well as GPx activity in the kidney and liver, SOD activity in the kidney and CAT activity in the liver were not affected. Protective effect of RSV was observed on GSH in the kidney and plasma and MDA in the kidney, plasma and urine. Oxidative stress is involved in OTA + CTN toxicity in vivo because such treatment affects parameters of oxidative stress, particularly in plasma. RSV can reduce but not overcome oxidative stress induced by combined OTA and CTN treatment.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Suziy de M. Bandeira ◽  
Glaucevane da S. Guedes ◽  
Lucas José S. da Fonseca ◽  
André S. Pires ◽  
Daniel P. Gelain ◽  
...  

This study evaluated the oxidative stress through enzymatic and nonenzymatic biomarkers in diabetic patients with and without hypertension and prediabetics. The SOD and CAT (in erythrocytes) and GPx (in plasma) enzymatic activities, plasma levels of lipid peroxidation, and total thiols were measured in the blood of 55 subjects with type 2 diabetes and 38 subjects without diabetes (9 pre-diabetics and 29 controls) aged 40–86 years. The total SOD activity and the lipid peroxidation were higher in diabetics compared to nondiabetics. In stratified groups, the total SOD activity was different for the hypertensive diabetics compared to the prediabetics and normotensive controls. Lipid peroxidation was significantly higher in both groups of diabetics (hypertensive and normotensive) compared to prediabetic groups and hypertensive and normotensive controls. There was no significant difference in the CAT and GPx activities, as well as in the concentration of total thiols in the groups studied. Present data strongly suggest the involvement of oxidative stress in the pathophysiology of diabetes, revealing that the increased lipid peroxidation has a close relationship with high glucose levels, as observed by the fasting glucose and HbA1c levels. The results evidence the correlation between lipid peroxidation and DM, irrespective of the presence of hypertension.


2016 ◽  
Vol 46 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Marcos André Nohatto ◽  
Dirceu Agostinetto ◽  
Ana Claudia Langaro ◽  
Claudia de Oliveira ◽  
Queli Ruchel

ABSTRACT Understanding the physiological defense behavior of plants subjected to herbicide application may help to identify products with higher or lower capacity to cause oxidative stress in crops. This study aimed at evaluating the effect of herbicides in the antioxidant activity of rice plants. The experimental design was completely randomized, with six replications. Treatments consisted of the herbicides bentazon (photosystem II inhibitor; 960 g ha-1), penoxsulam (acetolactate synthase inhibitor; 60 g ha-1), cyhalofop-butyl (acetyl coenzyme-A carboxylase inhibitor; 315 g ha-1) and a control. After the herbicides application, samples of rice shoots were collected at 12, 24, 48 and 96 hours after application (HAA). The components evaluated were hydrogen peroxide (H2O2), lipid peroxidation and activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Bentazon (up to 24 HAA) and penoxsulam (48 and 96 HAA) reduced the CAT activity. Moreover, these herbicides increased the levels of H2O2, lipid peroxidation and SOD activity, indicating a condition of oxidative stress in rice plants. The cyhalofop-butyl herbicide did not alter the antioxidant activity, showing that it causes less stress to the crop.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5136 ◽  
Author(s):  
Matheus Marcon ◽  
Ricieri Mocelin ◽  
Adrieli Sachett ◽  
Anna M. Siebel ◽  
Ana P. Herrmann ◽  
...  

Background The enriched environment (EE) is a laboratory housing model that emerged from efforts to minimize the impact of environmental conditions on laboratory animals. Recently, we showed that EE promoted positive effects on behavior and cortisol levels in zebrafish submitted to the unpredictable chronic stress (UCS) protocol. Here, we expanded the characterization of the effects of UCS protocol by assessing parameters of oxidative status in the zebrafish brain and reveal that EE protects against the oxidative stress induced by chronic stress. Methods Zebrafish were exposed to EE (21 or 28 days) or standard housing conditions and subjected to the UCS protocol for seven days. Oxidative stress parameters (lipid peroxidation (TBARS), reactive oxygen species (ROS) levels, non-protein thiol (NPSH) and total thiol (SH) levels, superoxide dismutase (SOD) and catalase (CAT) activities were measured in brain homogenate. Results Our results revealed that UCS increased lipid peroxidation and ROS levels, while decreased NPSH levels and SOD activity, suggesting oxidative damage. EE for 28 days prevented all changes induced by the UCS protocol, and EE for 21 days prevented the alterations on NPSH levels, lipid peroxidation and ROS levels. Both EE for 21 or 28 days increased CAT activity. Discussion Our findings reinforce the idea that EE exerts neuromodulatory effects in the zebrafish brain. EE promoted positive effects as it helped maintain the redox homeostasis, which may reduce the susceptibility to stress and its oxidative impact.


2014 ◽  
Vol 66 (3) ◽  
pp. 1075-1081
Author(s):  
Ivan Simic ◽  
Violeta Iric-Cupic ◽  
Rada Vucic ◽  
Marina Petrovic ◽  
Violeta Mladenovic ◽  
...  

The aim of the present study was to evaluate the subchronic effects of 3,4-methylenedioxymethamphetamine on several oxidative stress markers: index of lipid peroxidation (ILP), superoxide dismutase (SOD) activity, superoxide radical (O2.-) levels, and reduced glutathione (GSH) levels in the frontal cortex, striatum and hippocampus of the rat. The study included 64 male Wistar rats (200-250g). The animals were treated per os with of 5, 10, or 20 mg/kg of 3,4-methylenedioxymethamphetamine (MDMA) every day for 15 days. The subchronic administration of MDMA resulted in an increase in ILP, SOD and O2.-, and a decrease in GSH, from which we conclude that oxidative stress was induced in rat brain.


2019 ◽  
Vol 20 (21) ◽  
pp. 5423 ◽  
Author(s):  
Mirza Muhammad Fahd Qadir ◽  
Dagmar Klein ◽  
Silvia Álvarez-Cubela ◽  
Juan Domínguez-Bendala ◽  
Ricardo Luis Pastori

Cellular stress, combined with dysfunctional, inadequate mitochondrial phosphorylation, produces an excessive amount of reactive oxygen species (ROS) and an increased level of ROS in cells, which leads to oxidation and subsequent cellular damage. Because of its cell damaging action, an association between anomalous ROS production and disease such as Type 1 (T1D) and Type 2 (T2D) diabetes, as well as their complications, has been well established. However, there is a lack of understanding about genome-driven responses to ROS-mediated cellular stress. Over the last decade, multiple studies have suggested a link between oxidative stress and microRNAs (miRNAs). The miRNAs are small non-coding RNAs that mostly suppress expression of the target gene by interaction with its 3’untranslated region (3′UTR). In this paper, we review the recent progress in the field, focusing on the association between miRNAs and oxidative stress during the progression of diabetes.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 444
Author(s):  
Agnieszka Żak ◽  
Natalia Siwińska ◽  
Elżbieta Chełmecka ◽  
Barbara Bażanów ◽  
Ewa Romuk ◽  
...  

The study aims to assess the impact of age, pituitary pars intermedia dysfunction (PPID) and insulin dysregulation (ID) in horses on selected oxidative stress markers. The study includes 32 horses, divided into three groups: “young” adult group (aged 8–16 years old) “geriatric” group (aged 18–24 years old) and the “PPID” group (aged 15–31 years old). The PPID group was further divided into two subgroups: PPID ID+ and PPID ID− based on presence or absence of ID. We measured serum antioxidant stress markers in all horses: total oxidant status (TOS), total antioxidant capacity (TAC), ceruloplasmin (CER), lipofuscin (LPS), malondialdehyde (MDA) and thiols concentrations (containing sulfhydryl group -SH) as well as enzymatic systems: total superoxide dismutase (SOD), cytoplasmic SOD (CuZnSOD), mitochondrial SOD activity (MnSOD). Total serum thiols were significantly lower in the geriatric group and in the PPID group compared to the young group. The MnSOD concentration was higher in the PPID ID+ group compared to the PPID ID−. LPS and MDA concentrations were lower in the PPID ID+ group compared to the PPID ID− group. In the selected study groups of horses, older age, the presence of PPID and ID in the case of PPID had no effect on the studied oxidative stress markers.


2012 ◽  
Vol 24 (1) ◽  
pp. 199
Author(s):  
S. Di Francesco ◽  
M. Rubessa ◽  
L. Boccia ◽  
M. De Blasi ◽  
P. Stiuso ◽  
...  

In vitro-produced embryos are less viable than their in vivo counterparts. It is known that the developmental speed is a reliable marker of embryo viability. One of the major factors impairing in vitro embryo development is oxidative stress. The aim of the study was to evaluate oxidative stress and lipid peroxidation in bovine in vitro-produced embryos that reached different developmental stages at the end of culture. Abattoir-derived oocytes were matured in vitro in TCM-199 with 15% bovine serum, 0.5 μg mL–1 of FSH, 5 μg mL–1 of LH, 0.8 mM L-glutamine and 50 mg mL–1 of gentamicin. Mature cumulus–oocyte complexes (COC) were fertilized in Tyrode's modified medium, supplemented by 5.3 SI mL–1 of heparin, 30 μM penicillamine, 15 μM hypotaurine, 1 μM epinephrine and 1% of bovine serum. Both in vitro maturation and IVF were carried out at 39°C and 5% CO2 in air. After 20 to 22 h of gamete co-incubation, presumptive zygotes were denuded and cultured in SOF for 7 days at 39°C under humidified air with 5% CO2, 7% O2 and 88% N2 in air. At the end of culture, embryos were assessed according to the stage of development as tight morulae (TM), early blastocysts (eBl), blastocysts (Bl), expanded blastocysts (XBl) and hatched blastocysts (HBl). For each stage of development, an average of 20 embryos were used to determine manganese superoxide dismutase (MnSOD) activity and levels of nitric oxide (NO2–) and thiobarbituric acid-reactive substances (TBARS). The SOD activity was determined by a colourimetric method (Caraglia M et al. 2011 Cell Death Dis. 2, 150, doi:10.1038/cddis.2011.34) whereas NO2– and TBARS were measured by a spectrophotometric method (Balestrieri et al. 2011 J. Cell. Physiol. doi:10.1002/jcp.22874). Data were analysed by t-test. Greater (P < 0.05) MnSOD activity was observed in faster developing embryos (i.e. XBl and HBl) compared with slower ones (i.e. TM, eBl and Bl; 0.46 ± 0.04, 0.46 ± 0.03, 0.14 ± 0.01, 1.66 ± 0.01 and 3.26 ± 0.3 U μg–1 of protein, in TM, eBl, Bl, XBl and HBl, respectively). At the same time, XBl and HBl showed the lowest NO2– levels. However, NO2– values were lower in TM compared with eBl and Bl (0.04 ± 0.002, 0.07 ± 0.005, 0.06 ± 0.003, 0.01 ± 0.002 and 0.01 ± 0.001 nM μg–1 of protein, in TM, eBl, Bl, XBl and HBl, respectively). Similarly to NO2–, TBARS levels were lower in XBl and HBl compared with the other stages (0.0059 ± 0.002, 0.009 ± 0.003, 0.006 ± 0.002, 0.001 ± 0.0001 and 0.0009 ± 0.0002 μM μg–1 of protein, in TM, eBl, Bl, XBl and HBl, respectively). In conclusion, these results clearly indicate developmental stage-dependent changes in MnSOD activity and levels of NO2– and TBARS, suggesting that oxidative stress and lipid peroxidation are reduced in faster developing embryos.


Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 455
Author(s):  
Lee ◽  
Hur

This study was conducted to determine the effect of beef peptide extract on oxidative stress in the brains of spontaneously hypertensive rats (SHRs). A 3-kDa peptide extract was obtained from beef myofibrillar protein using alkaline-AK (AK3K). Oxidative stress in SHR brains was measured by assessing malondialdehyde (MDA) and reactive oxygen species (ROS) concentrations and superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activity. The SHR brains treated with the AK3K peptide extract (400 mg/kg body weight, AK3K400) showed a significant decrease in MDA and ROS contents by 0.33 and 23.92 μM, respectively (p < 0.05) compared to the control. The SOD activity for AK3K400 was 61.26%, around 20% higher than the control. Furthermore, the SHRs treated with the AK3K peptide extract showed results similar to those obtained using captopril, a hypertension drug, except for the MDA level. The study demonstrates that the beef peptide extract inhibits the generation of oxidative stress in the SHR brain and could possibly be used for neuronal hypertension therapy.


Crustaceana ◽  
2011 ◽  
Vol 84 (10) ◽  
pp. 1197-1210 ◽  

AbstractThe objective of this study was to determine the effect of sublethal copper concentrations on certain antioxidant enzymes and lipid peroxidation products in the postlarvae (PL) of Penaeus indicus when subjected to short- and long-term exposure in the laboratory. The PL of P. indicus were exposed to 0.1641 ppm (sublethal) copper for a period of 30 days along with a parallel control. Sampling was carried out at six different time intervals, i.e., 24, 48, and 96 hrs (shortterm), and 10, 20, and 30 days (long-term). Variations in the activity of the antioxidant enzymes, namely, catalase (CAT) and superoxide dismutase (SOD), as well as lipid peroxidation products (LPP) were measured as biomarkers of metal toxicity. Our results showed a significant (P < 0.05) increase in LPP (indicating oxidative stress) and CAT activity (indicating an adaptive response of the PL for protection against oxidative stress) in the exposed PL for all periods of exposure. However, SOD activity significantly (P < 0.05) decreased on 20 and 30 days exposure, indicating susceptibility of the PL to oxidative stress upon long-term exposure. Therefore, CAT can serve as a better biomarker of oxidative stress than SOD to long-term copper toxicity. Our results indicate that copper contamination causes oxidative stress even at sublethal doses in Penaeus indicus PL, which can thus be used as a potential biomarker of copper toxicity for long-term monitoring of coastal marine ecosystems.


Sign in / Sign up

Export Citation Format

Share Document