scholarly journals Unlocked capacity of proteins to attack membranes characteristic of aggregation: the evil for diseases and aging from Pandora’s box

2016 ◽  
Author(s):  
Liangzhong Lim ◽  
Yimei Lu ◽  
Jianxing Song

AbstractAggregation of specific proteins is characteristic of a large spectrum of human diseases including all neurodegenerative diseases, while aggregation of non-specific proteins has been now identified to be a biomarker for cellular aging down to Escherichia coli. Previously, as facilitated with our discovery in 2005 that “completely insoluble” proteins could be all solubilized in unsalted water [Song (2009) FEBS Lett. 583: 953], we found that the TDP-43 prion-like domain in fact contains an intrinsic membrane-interacting subdomain [Lim et al. [2016] PLoS Biol. 14, e1002338]. We decrypted that ALS-causing mutations/cofactor-depletion act to render the wellstructured folds of cytosolic VAPB-MSP domain and SOD1 into highly disordered states, thus becoming buffer-insoluble. Most surprisingly, this also unlocks the amphiphilic/hydrophobic regions universally exiting in proteins, which thus acquire a novel capacity in abnormally interacting with membranes [Qin et al. (2013) F1000Res 2-221.v2; Lim (2016) BBA-Biomembranes. 1858: 2223]. Here we aimed extend our discovery to address two fundamental questions: 1) why many E. coli proteins become aggregated in aging; and 2) whether aggregation-prone proteins can also acquire a novel capacity in interacting with membranes; by dissecting the 557-residue S1 ribosomal protein into 7 fragments to disrupt its 6 S1 folds, followed by extensive CD and NMR characterizations. The results reveal that we have successfully eliminated all 6 S1 folds and fragment 4 becomes highly disordered and thus buffer-insoluble. Most strikingly, F4 does acquire a capacity in transforming into a helical conformation in membrane environments. Here, for the first time, our study deciphers that like ALScausing mutants, the disruption of a well-folded E. coli cytosolic protein also unlocks its amphiphilic/hydrophobic regions which are capable of abnormally interacting with membranes. Therefore, proteins, the most important functional players for all forms of life, can transform into membrane-toxic forms triggering diseases and aging, if their hydrophobic/amphiphilic regions are unlocked by genetic, pathological or/and environmental factors, which is characteristic of severe aggregation.

2021 ◽  
Vol 7 (4) ◽  
pp. 726-738
Author(s):  
Seyyed M. H. Abtahi ◽  
Ojaswi Aryal ◽  
Niveen S. Ismail

Zooplankton can significantly impact E. coli inactivation in wastewater, but inactivation rates are dependent on environmental conditions.


1982 ◽  
Vol 152 (1) ◽  
pp. 26-34
Author(s):  
M Leduc ◽  
R Kasra ◽  
J van Heijenoort

Various methods of inducing autolysis of Escherichia coli cells were investigated, some being described here for the first time. For the autolysis of growing cells only induction methods interfering with the biosynthesis of peptidoglycan were taken into consideration, whereas with harvested cells autolysis was induced by rapid osmotic or EDTA shock treatments. The highest rates of autolysis were observed after induction by moenomycin, EDTA, or cephaloridine. The different autolyses examined shared certain common properties. In particular, regardless of the induction method used, more or less extensive peptidoglycan degradation was observed, and 10(-2) M Mg2+ efficiently inhibited the autolytic process. However, for other properties a distinction was made between methods used for growing cells and those used for harvested cells. Autolysis of growing cells required RNA, protein, and fatty acid synthesis. No such requirements were observed with shock-induced autolysis performed with harvested cells. Thus, the effects of Mg2+, rifampicin, chloramphenicol, and cerulenin clearly suggest that distinct factors are involved in the control of the autolytic system of E. Coli. Uncoupling agents such as sodium azide, 2,4-dinitrophenol, and carbonyl-cyanide-m-chlorophenyl hydrazone used at their usual inhibiting concentration had no effect on the cephaloridine or shock-induced autolysis.


2018 ◽  
Vol 13 (4) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Ngonye Keroletswe ◽  
Runner R. T. Majinda ◽  
Ishmael B. Masesane

One new 3-prenyl-2-flavene, named baphiflavene A, 1, and eleven known compounds, 2-12, were isolated and reported for the first time from Baphia massaiensis using several chromatographic techniques. Their structures were elucidated using different spectroscopic techniques; 1D and 2D-NMR, HRMS, GC-MS, UV/Vis, FTIR and by comparison with literature data. The isolates were tested against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Candida albicans to establish their preliminary antimicrobial activities. The results revealed that compound 1 had moderate activities against both Gram positive ( B. subtilis and S. aureus) and Gram negative ( E. coli and P. aeruginosa) bacteria, and good activity against C. albicans with inhibition zones of 10–23 mm (compared to 19 mm for chloramphenicol and miconazole standards). To the best of our knowledge, this is the first phytochemical work reported on Baphia massaiensis.


2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Oumar Ouchar Mahamat ◽  
Manon Lounnas ◽  
Mallorie Hide ◽  
Abelsalam Tidjani ◽  
Julio Benavides ◽  
...  

ABSTRACT We detected for the first time blaNDM-5 and blaOXA-181 in Escherichia coli isolates from hospitalized patients and healthy volunteers in Chad. These resistance genes were located on IncX3 and IncF plasmids. Despite the large diversity of E. coli clones, the identified resistant intestinal isolates belonged mainly to the same sequence type.


2008 ◽  
Vol 190 (20) ◽  
pp. 6598-6608 ◽  
Author(s):  
Tina Jaeger ◽  
Christoph Mayer

ABSTRACT The MurNAc etherase MurQ of Escherichia coli is essential for the catabolism of the bacterial cell wall sugar N-acetylmuramic acid (MurNAc) obtained either from the environment or from the endogenous cell wall (i.e., recycling). High-level expression of murQ is required for growth on MurNAc as the sole source of carbon and energy, whereas constitutive low-level expression of murQ is sufficient for the recycling of peptidoglycan fragments continuously released from the cell wall during growth of the bacteria. Here we characterize for the first time the expression of murQ and its regulation by MurR, a member of the poorly characterized RpiR/AlsR family of transcriptional regulators. Deleting murR abolished the extensive lag phase observed for E. coli grown on MurNAc and enhanced murQ transcription some 20-fold. MurR forms a stable multimer (most likely a tetramer) and binds to two adjacent inverted repeats within an operator region. In this way MurR represses transcription from the murQ promoter and also interferes with its own transcription. MurNAc-6-phosphate, the substrate of MurQ, was identified as a specific inducer that weakens binding of MurR to the operator. Moreover, murQ transcription depends on the activation by cyclic AMP (cAMP)-catabolite activator protein (CAP) bound to a class I site upstream of the murQ promoter. murR and murQ are divergently orientated and expressed from nonoverlapping face-to-face (convergent) promoters, yielding transcripts that are complementary at their 5′ ends. As a consequence of this unusual promoter arrangement, cAMP-CAP also affects murR transcription, presumably by acting as a roadblock for RNA polymerase.


2014 ◽  
Vol 53 (2) ◽  
pp. 486-492 ◽  
Author(s):  
Sabine Delannoy ◽  
Patricia Mariani-Kurkdjian ◽  
Stephane Bonacorsi ◽  
Sandrine Liguori ◽  
Patrick Fach

Strains ofEscherichia coliO26:H11 that were positive forstx2alone (n= 23), which were not epidemiologically related or part of an outbreak, were isolated from pediatric patients in France between 2010 and 2013. We were interested in comparing these strains with the new highly virulentstx2a-positiveE. coliO26 clone sequence type 29 (ST29) that has emerged recently in Europe, and we tested them by multilocus sequence typing (MLST),stx2subtyping, clustered regularly interspaced short palindromic repeat (CRISPR) sequencing, and plasmid (ehxA,katP,espP, andetpD) and chromosomal (Z2098,espK, andespV) virulence gene profiling. We showed that 16 of the 23 strains appeared to correspond to this new clone, but the characteristics of 12 strains differed significantly from the previously described characteristics, with negative results for both plasmid and chromosomal genetic markers. These 12 strains exhibited a ST29 genotype and related CRISPR arrays (CRISPR2a alleles 67 or 71), suggesting that they evolved in a common environment. This finding was corroborated by the presence ofstx2din 7 of the 12 ST29 strains. This is the first time thatE. coliO26:H11 carryingstx2dhas been isolated from humans. This is additional evidence of the continuing evolution of virulent Shiga toxin-producingE. coli(STEC) O26 strains. A new O26:H11 CRISPR PCR assay, SP_O26_E, has been developed for detection of these 12 particular ST29 strains ofE. coliO26:H11. This test is useful to better characterize thestx2-positive O26:H11 clinical isolates, which are associated with severe clinical outcomes such as bloody diarrhea and hemolytic uremic syndrome.


2018 ◽  
Vol 13 (12) ◽  
pp. 1934578X1801301
Author(s):  
Dafeng Song ◽  
Ping Li ◽  
Qing Gu

A novel bacteriocin, plantaricin ZJ5 (PZJ5) was yielded from Lactobacillus plantarum ZJ5, cloned, and produced in Escherichia coli BL21 (DE3) pLys. The PZJ5 structural gene was fused with a Trx tag, and cloned into the pET32a plasmid under the control of the inducible lac operon. Induction was performed with isopropyl-β-D-thiogalactopyranoside (IPTG), with subsequent overexpression of the fusion protein, followed by purification to homogeneity via His affinity chromatography. Recombinant E. coli produced greater quantities of PZJ5 than L. plantarum ZJ5, and PZJ5 in E. coli was expressed in the form of soluble material. Biologically active PZJ5 was recovered by cleaving the purified fusion protein using enterokinase. The released PZJ5 demonstrated antibacterial activity against Micrococcus luteus. In this study, an inexpensive biological method using a Trx fusion system was presented, and for the first time, bacteriocin PZJ5 was expressed and purified in E. coli.


mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Adi Oron-Gottesman ◽  
Martina Sauert ◽  
Isabella Moll ◽  
Hanna Engelberg-Kulka

ABSTRACT Escherichia coli mazEF is an extensively studied stress-induced toxin-antitoxin (TA) system. The toxin MazF is an endoribonuclease that cleaves RNAs at ACA sites. Thereby, under stress, the induced MazF generates a stress-induced translation machinery (STM), composed of MazF-processed mRNAs and selective ribosomes that specifically translate the processed mRNAs. Here, we further characterized the STM system, finding that MazF cleaves only ACA sites located in the open reading frames of processed mRNAs, while out-of-frame ACAs are resistant. This in-frame ACA cleavage of MazF seems to depend on MazF binding to an extracellular-death-factor (EDF)-like element in ribosomal protein bS1 (bacterial S1), apparently causing MazF to be part of STM ribosomes. Furthermore, due to the in-frame MazF cleavage of ACAs under stress, a bias occurs in the reading of the genetic code causing the amino acid threonine to be encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA. IMPORTANCE The genetic code is a universal characteristic of all living organisms. It defines the set of rules by which nucleotide triplets specify which amino acid will be incorporated into a protein. Our results represent the first existing report on a stress-induced bias in the reading of the genetic code. We found that in E. coli , under stress, the amino acid threonine is encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA. This is because under stress, MazF generates a stress-induced translation machinery (STM) in which MazF cleaves in-frame ACA sites of the processed mRNAs.


2020 ◽  
Vol 8 (9) ◽  
pp. 1434 ◽  
Author(s):  
Hyun-Ju Song ◽  
Dong Chan Moon ◽  
Abraham Fikru Mechesso ◽  
Hee Young Kang ◽  
Mi Hyun Kim ◽  
...  

We aimed to identify and characterize extended-spectrum β-lactamase (ESBL)-and/or plasmid-mediated AmpC β-lactamase (pAmpC)-producing Escherichia coli isolated from healthy broiler chickens slaughtered for human consumption in Korea. A total of 332 E. coli isolates were identified from 339 cloacal swabs in 2019. More than 90% of the isolates were resistant to multiple antimicrobials. ESBL/pAmpC-production was noted in 14% (46/332) of the isolates. Six of the CTX-M-β-lactamase-producing isolates were found to co-harbor at least one plasmid-mediated quinolone resistance gene. We observed the co-existence of blaCMY-2 and mcr-1 genes in the same isolate for the first time in Korea. Phylogenetic analysis demonstrated that the majority of blaCMY-2-carrying isolates belonged to subgroup D. Conjugation confirmed the transferability of blaCTX-M and blaCMY-2 genes, as well as non-β-lactam resistance traits from 60.9% (28/46) of the ESBL/pAmpC-producing isolates to a recipient E. coli J53. The ISECP, IS903, and orf477 elements were detected in the upstream or downstream regions. The blaCTX-M and blaCMY-2 genes mainly belonged to the IncI1, IncHI2, and/or IncFII plasmids. Additionally, the majority of ESBL/pAmpC-producing isolates exhibited heterogeneous PFGE profiles. This study showed that healthy chickens act as reservoirs of ESBL/pAmpC-producing E. coli that can potentially be transmitted to humans.


2005 ◽  
Vol 49 (7) ◽  
pp. 2746-2752 ◽  
Author(s):  
Anastasia Koutsolioutsou ◽  
Samuel Peña-Llopis ◽  
Bruce Demple

ABSTRACT The soxRS regulon of Escherichia coli and Salmonella enterica is induced by redox-cycling compounds or nitric oxide and provides resistance to superoxide-generating agents, macrophage-generated nitric oxide, antibiotics, and organic solvents. We have previously shown that constitutive expression of soxRS can contribute to quinolone resistance in clinically relevant S. enterica. In this work, we have carried out an analysis of the mechanism of constitutive soxS expression and its role in antibiotic resistance in E. coli clinical isolates. We show that constitutive soxS expression in three out of six strains was caused by single point mutations in the soxR gene. The mutant SoxR proteins contributed to the multiple-antibiotic resistance phenotypes of the clinical strains and were sufficient to confer multiple-antibiotic resistance in a fresh genetic background. In the other three clinical isolates, we observed, for the first time, that elevated soxS expression was not due to mutations in soxR. The mechanism of such increased soxS expression remains unclear. The same E. coli clinical isolates harbored polymorphic soxR and soxS DNA sequences, also seen for the first time.


Sign in / Sign up

Export Citation Format

Share Document