scholarly journals Multiplexed and multivariate representations of sound identity during perceptual constancy

2017 ◽  
Author(s):  
Stephen M. Town ◽  
Katherine C. Wood ◽  
Jennifer K. Bizley

SummaryPerceptual constancy requires neural representations that are selective for object identity, but also tolerant for identity-preserving transformations. How such representations arise in the brain and contribute to perception remains unclear. Here we studied tolerant representations of sound identity in the auditory system by recording multi-unit activity in tonotopic auditory cortex of ferrets discriminating the identity of vowels which co-varied across orthogonal stimulus dimensions (fundamental frequency, sound level, location and voicing). We found that neural decoding of vowel identity was most successful across the same orthogonal dimensions over which animals generalized their behavior. We also decoded orthogonal sound features and behavioral variables including choice and accuracy to show a behaviorally-relevant, multivariate and multiplexed representation of sound, with each variable represented over a distinct time-course. Finally, information content and timing of sound feature encoding was modulated by task-engagement and training, suggesting that tolerant representations during perceptual constancy are attentionally and experience-dependent.

2020 ◽  
Author(s):  
Yaelan Jung ◽  
Dirk B. Walther

AbstractNatural scenes deliver rich sensory information about the world. Decades of research has shown that the scene-selective network in the visual cortex represents various aspects of scenes. It is, however, unknown how such complex scene information is processed beyond the visual cortex, such as in the prefrontal cortex. It is also unknown how task context impacts the process of scene perception, modulating which scene content is represented in the brain. In this study, we investigate these questions using scene images from four natural scene categories, which also depict two types of global scene properties, temperature (warm or cold), and sound-level (noisy or quiet). A group of healthy human subjects from both sexes participated in the present study using fMRI. In the study, participants viewed scene images under two different task conditions; temperature judgment and sound-level judgment. We analyzed how different scene attributes (scene categories, temperature, and sound-level information) are represented across the brain under these task conditions. Our findings show that global scene properties are only represented in the brain, especially in the prefrontal cortex, when they are task-relevant. However, scene categories are represented in the brain, in both the parahippocampal place area and the prefrontal cortex, regardless of task context. These findings suggest that the prefrontal cortex selectively represents scene content according to task demands, but this task selectivity depends on the types of scene content; task modulates neural representations of global scene properties but not of scene categories.


2017 ◽  
Author(s):  
J. Brendan Ritchie ◽  
David Michael Kaplan ◽  
Colin Klein

AbstractSince its introduction, multivariate pattern analysis (MVPA), or “neural decoding”, has transformed the field of cognitive neuroscience. Underlying its influence is a crucial inference, which we call the Decoder’s Dictum: if information can be decoded from patterns of neural activity, then this provides strong evidence about what information those patterns represent. Although the Dictum is a widely held and well-motivated principle in decoding research, it has received scant philosophical attention. We critically evaluate the Dictum, arguing that it is false: decodability is a poor guide for revealing the content of neural representations. However, we also suggest how the Dictum can be improved on, in order to better justify inferences about neural representation using MVPA.


Author(s):  
Jochen Seitz ◽  
Katharina Bühren ◽  
Georg G. von Polier ◽  
Nicole Heussen ◽  
Beate Herpertz-Dahlmann ◽  
...  

Objective: Acute anorexia nervosa (AN) leads to reduced gray (GM) and white matter (WM) volume in the brain, which however improves again upon restoration of weight. Yet little is known about the extent and clinical correlates of these brain changes, nor do we know much about the time-course and completeness of their recovery. Methods: We conducted a meta-analysis and a qualitative review of all magnetic resonance imaging studies involving volume analyses of the brain in both acute and recovered AN. Results: We identified structural neuroimaging studies with a total of 214 acute AN patients and 177 weight-recovered AN patients. In acute AN, GM was reduced by 5.6% and WM by 3.8% compared to healthy controls (HC). Short-term weight recovery 2–5 months after admission resulted in restitution of about half of the GM aberrations and almost full WM recovery. After 2–8 years of remission GM and WM were nearly normalized, and differences to HC (GM: –1.0%, WM: –0.7%) were no longer significant, although small residual changes could not be ruled out. In the qualitative review some studies found GM volume loss to be associated with cognitive deficits and clinical prognosis. Conclusions: GM and WM were strongly reduced in acute AN. The completeness of brain volume rehabilitation remained equivocal.


1993 ◽  
Vol 4 (3) ◽  
pp. 227-237 ◽  
Author(s):  
Donald G. Stein ◽  
Marylou M. Glasier ◽  
Stuart W. Hoffman

It is only within the last ten years that research on treatment for central nervous system (CNS) recovery after injury has become more focused on the complexities involved in promoting recovery from brain injury when the CNS is viewed as an integrated and dynamic system. There have been major advances in research in recovery over the last decade, including new information on the mechanics and genetics of metabolism and chemical activity, the definition of excitotoxic effects and the discovery that the brain itself secretes complex proteins, peptides and hormones which are capable of directly stimulating the repair of damaged neurons or blocking some of the degenerative processes caused by the injury cascade. Many of these agents, plus other nontoxic naturally occurring substances, are being tested as treatment for brain injury. Further work is needed to determine appropriate combinations of treatments and optimum times of administration with respect to the time course of the CNS disorder. In order to understand the mechanisms that mediate traumatic brain injury and repair, there must be a merging of findings from neurochemical studies with data from intensive behavioral testing.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Laurence Barrier ◽  
Bernard Fauconneau ◽  
Anastasia Noël ◽  
Sabrina Ingrand

There is evidence linking sphingolipid abnormalities, APP processing, and neuronal death in Alzheimer's disease (AD). We previously reported a strong elevation of ceramide levels in the brain of the APPSL/PS1Ki mouse model of AD, preceding the neuronal death. To extend these findings, we analyzed ceramide and related-sphingolipid contents in brain from two other mouse models (i.e., APPSLand APPSL/PS1M146L) in which the time-course of pathology is closer to that seen in most currently available models. Conversely to our previous work, ceramides did not accumulate in disease-associated brain regions (cortex and hippocampus) from both models. However, the APPSL/PS1Ki model is unique for its drastic neuronal loss coinciding with strong accumulation of neurotoxic Aβisoforms, not observed in other animal models of AD. Since there are neither neuronal loss nor toxic Aβspecies accumulation in APPSLmice, we hypothesized that it might explain the lack of ceramide accumulation, at least in this model.


2016 ◽  
Vol 91 (4) ◽  
Author(s):  
Luiza A. Castro-Jorge ◽  
Carla D. Pretto ◽  
Asa B. Smith ◽  
Oded Foreman ◽  
Kelly E. Carnahan ◽  
...  

ABSTRACT Interleukin-1β (IL-1β), an inflammatory cytokine and IL-1 receptor ligand, has diverse activities in the brain. We examined whether IL-1 signaling contributes to the encephalitis observed in mouse adenovirus type 1 (MAV-1) infection, using mice lacking the IL-1 receptor (Il1r1 −/− mice). Il1r1 −/− mice demonstrated reduced survival, greater disruption of the blood-brain barrier (BBB), higher brain viral loads, and higher brain inflammatory cytokine and chemokine levels than control C57BL/6J mice. We also examined infections of mice defective in IL-1β production (Pycard −/− mice) and mice defective in trafficking of Toll-like receptors to the endosome (Unc93b1 −/− mice). Pycard −/− and Unc93b1 −/− mice showed lower survival (similar to Il1r1 −/− mice) than control mice but, unlike Il1r1 −/− mice, did not have increased brain viral loads or BBB disruption. Based on the brain cytokine levels, MAV-1-infected Unc93b1 −/− mice had a very different inflammatory profile from infected Il1r1 −/− and Pycard −/− mice. Histological examination demonstrated pathological findings consistent with encephalitis in control and knockout mice; however, intranuclear viral inclusions were seen only in Il1r1 −/− mice. A time course of infection of control and Il1r1 −/− mice evaluating the kinetics of viral replication and cytokine production revealed differences between the mouse strains primarily at 7 to 8 days after infection, when mice began succumbing to MAV-1 infection. In the absence of IL-1 signaling, we noted an increase in the transcription of type I interferon (IFN)-stimulated genes. Together, these results indicate that IL-1 signaling is important during MAV-1 infection and suggest that, in its absence, increased IFN-β signaling may result in increased neuroinflammation. IMPORTANCE The investigation of encephalitis pathogenesis produced by different viruses is needed to characterize virus and host-specific factors that contribute to disease. MAV-1 produces viral encephalitis in its natural host, providing a good model for studying factors involved in encephalitis development. We investigated the role of IL-1 signaling during MAV-1-induced encephalitis. Unexpectedly, the lack of IL-1 signaling increased the mortality and inflammation in mice infected with MAV-1. Also, there was an increase in the transcription of type I IFN-stimulated genes that correlated with the observed increased mortality and inflammation. The findings highlight the complex nature of encephalitis and suggests that IL-1 has a protective effect for the development of MAV-1-induced encephalitis.


2006 ◽  
Vol 290 (6) ◽  
pp. R1565-R1569 ◽  
Author(s):  
Kimberly P. Kinzig ◽  
Karen A. Scott ◽  
Jayson Hyun ◽  
Sheng Bi ◽  
Timothy H. Moran

The gut peptide ghrelin has been shown to stimulate food intake after both peripheral and central administration, and the hypothalamic arcuate nucleus has been proposed to be the major site for mediating this feeding stimulatory action. Ghrelin receptors are widely distributed in the brain, and hindbrain ghrelin administration has been shown to potently stimulate feeding, suggesting that there may be other sites for ghrelin action. In the present study, we have further assessed potential sites for ghrelin action by comparing the ability of lateral and fourth ventricular ghrelin administration to stimulate food intake and alter patterns of hypothalamic gene expression. Ghrelin (0.32, 1, or 3.2 nmol) in the lateral or fourth ventricle significantly increased food intake in the first 4 h after injection, with no ventricle-dependent differences in degree or time course of hyperphagia. One nanomole of ghrelin into either the lateral or fourth ventricle resulted in similar increases in arcuate nucleus neuropeptide Y mRNA expression. Expression levels of agouti-related peptide or proopiomelanocortin mRNA were not affected by ghrelin administration. These data demonstrate that ghrelin can affect food intake and hypothalamic gene expression through interactions at multiple brain sites.


2021 ◽  
Vol 33 (1) ◽  
pp. 146-157
Author(s):  
Chong Zhao ◽  
Geoffrey F. Woodman

It is not definitely known how direct-current stimulation causes its long-lasting effects. Here, we tested the hypothesis that the long time course of transcranial direct-current stimulation (tDCS) is because of the electrical field increasing the plasticity of the brain tissue. If this is the case, then we should see tDCS effects when humans need to encode information into long-term memory, but not at other times. We tested this hypothesis by delivering tDCS to the ventral visual stream of human participants during different tasks (i.e., recognition memory vs. visual search) and at different times during a memory task. We found that tDCS improved memory encoding, and the neural correlates thereof, but not retrieval. We also found that tDCS did not change the efficiency of information processing during visual search for a certain target object, a task that does not require the formation of new connections in the brain but instead relies on attention and object recognition mechanisms. Thus, our findings support the hypothesis that direct-current stimulation modulates brain activity by changing the underlying plasticity of the tissue.


1998 ◽  
Vol 119 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Norbert Dieringer ◽  
Hans Straka

Removal of the labyrinthine organs on one side results in a number of severe postural and dynamic reflex deficits. Over time some of these behavioral deficits normalize again. At a chronic stage the brain of frogs exhibits a number of changes in vestibular and propriospinal circuits on the operated side that were studied in vitro. The onset of changes in the vestibular nuclear complex was delayed, became evident only after head posture had recovered by more than 50%, and was independent of the presence or absence of a degeneration of vestibular nerve afferent fibers. The time course of changes measured in the isolated spinal cord paralleled the time course of normalization of head and body posture. Results obtained after selective lesions of individual labyrinthine nerve branches show that unilateral inactivation of utricular afferent inputs is a necessary and sufficient condition to provoke postural deficits and propriospinal changes similar to those after the removal of all labyrinthine organs. The presence of multiple synaptic changes at distributed anatomic sites over different periods of time suggests that different parts of the central nervous system are involved in the normalization of different manifestations of the vestibular lesion syndrome. (Otolaryngol Head Neck Surg 1998;119:27–33.)


Sign in / Sign up

Export Citation Format

Share Document