scholarly journals Mutational, transcriptional and viral shedding dynamics of the marine turtle fibropapillomatosis tumor epizootic

Author(s):  
Kelsey Yetsko ◽  
Jessica Farrell ◽  
Maximilian R. Stammnitz ◽  
Liam Whitmore ◽  
Jenny Whilde ◽  
...  

AbstractSea turtle populations are directly and indirectly under threat from a range of anthropogenic processes. Perhaps the most visibly apparent of these is the disfiguring tumor disease epizootic (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at a number of affected sites globally. Environmental exposures seem key to inducing tumor development, possibly through weakening host immune systems to the point of enabling pathogen-induced tumor formation. However, we do not yet understand the precise molecular and mutational events driving fibropapillomatosis tumor formation and progression. Similarly, many open questions remain about the role of the herpesvirus (chelonid herpesvirus 5, ChHV5) associated with the disease as a potential co-trigger, and whether its occurrence within tumors is causative or opportunistic. Without improved understanding of the basic biology of this disease epizootic, treatment, containment and mitigation options are severely hampered.To address fundamental questions relating to the oncogenic signaling, mutational spectrum, viral load, viral transcriptional status (lytic or latent) and spread, we employed transcriptomic profiling, whole genome sequencing, immunohistochemistry and environmental (e)DNA-based monitoring of viral shedding. In particular we focused on the mutational landscape of tumors and assessing the transcriptional similarity of external (skin) and internal (visceral organs) tumors, and the oncogenic signaling events driving early stage tumor growth and post-surgical tumor regrowth. These analyses revealed that internal fibropapillomatosis tumors are molecularly distinct from the more common external tumors. However, our molecular analyses also revealed that there are a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common between internal and external tumors, such as the MAPK, Wnt, TGFβ and TNF oncogenic signaling pathways. We also determined that the tumor genomes can harbor copy number gains, indicating potentially viral-independent oncogenic processes. Genes within such mutated genomic regions have known roles in human skin cancer, including MAPK-associated genes. Turtles attempt to mount an immune response, but in some animals this appears to be insufficient to prevent tumor development and growth. ChHV5 was transcriptionally latent in all tumor stages sequenced, including early stage and recurrent tumors. We also revealed that the tumors themselves are the primary source of viral shedding into the marine environment and, if they are surgically removed, the level of ChHV5 in the water column drops.Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, therapeutic treatment, and appropriate quarantine responses for this wildlife epizootic. Furthermore, they provide insights into human pathogen-induced cancers, particularly mechanisms which are difficult to study in the human and terrestrial context, such as time-course quantification-based monitoring of viral shedding.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kelsey Yetsko ◽  
Jessica A. Farrell ◽  
Nicholas B. Blackburn ◽  
Liam Whitmore ◽  
Maximilian R. Stammnitz ◽  
...  

AbstractSea turtle populations are under threat from an epizootic tumor disease (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at many longer-affected sites globally. However, we do not yet understand the precise environmental, mutational and viral events driving fibropapillomatosis tumor formation and progression.Here we perform transcriptomic and immunohistochemical profiling of five fibropapillomatosis tumor types: external new, established and postsurgical regrowth tumors, and internal lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the more common external tumors. However, they have a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt, TGFβ and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitulate remarkably well the core pan-cancer drivers responsible for human cancers. Fibropapillomatosis has been considered benign, but metastatic-related transcriptional signatures are strongly activated in kidney and established external tumors. Tumors in turtles with poor outcomes (died/euthanized) have genes associated with apoptosis and immune function suppressed, with these genes providing putative predictive biomarkers.Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for this wildlife epizootic.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jessica A. Farrell ◽  
Kelsey Yetsko ◽  
Liam Whitmore ◽  
Jenny Whilde ◽  
Catherine B. Eastman ◽  
...  

AbstractPathogen-induced cancers account for 15% of human tumors and are a growing concern for endangered wildlife. Fibropapillomatosis is an expanding virally and environmentally co-induced sea turtle tumor epizootic. Chelonid herpesvirus 5 (ChHV5) is implicated as a causative virus, but its transmission method and specific role in oncogenesis and progression is unclear. We applied environmental (e)DNA-based viral monitoring to assess viral shedding as a direct means of transmission, and the relationship between tumor burden, surgical resection and ChHV5 shedding. To elucidate the abundance and transcriptional status of ChHV5 across early, established, regrowth and internal tumors we conducted genomics and transcriptomics. We determined that ChHV5 is shed into the water column, representing a likely transmission route, and revealed novel temporal shedding dynamics and tumor burden correlations. ChHV5 was more abundant in the water column than in marine leeches. We also revealed that ChHV5 is latent in fibropapillomatosis, including early stage, regrowth and internal tumors; higher viral transcription is not indicative of poor patient outcome, and high ChHV5 loads predominantly arise from latent virus. These results expand our knowledge of the cellular and shedding dynamics of ChHV5 and can provide insights into temporal transmission dynamics and viral oncogenesis not readily investigable in tumors of terrestrial species.


2018 ◽  
Vol 39 (7) ◽  
pp. 921-930 ◽  
Author(s):  
Ana de la Cueva ◽  
Michael Emmerling ◽  
Sarah L Lim ◽  
Shi Yang ◽  
Philip C Trackman ◽  
...  

Abstract The propeptide (LOX-PP) domain of the lysyl oxidase proenzyme was shown to inhibit the transformed phenotype of breast, lung and pancreatic cells in culture and the formation of Her2/neu-driven breast cancer in a xenograft model. A single nucleotide polymorphism (SNP, rs1800449) positioned in a highly conserved region of LOX-PP results in an Arg158Gln substitution (humans). This arginine (Arg)→glutamine (Gln) substitution profoundly impaired the ability of LOX-PP to inhibit the invasive phenotype and xenograft tumor formation. To study the effect of the SNP in vivo, here we established a knock in (KI) mouse line (LOX-PPGln mice) expressing an Arg152Gln substitution corresponding to the human Arg158Gln polymorphism. Breast cancer was induced in wild-type (WT) and LOX-PPGln female mice beginning at 6 weeks of age by treatment with 7,12-dimethylbenz(a)anthracene (DMBA) in combination with progesterone. Time course analysis of tumor development demonstrated earlier tumor onset and shorter overall survival in LOX-PPGln versus WT mice. To further compare the tumor burden in WT and LOX-PPGln mice, inguinal mammary glands from both groups of mice were examined for microscopic lesion formation. LOX-PPGln glands contained more lesions (9.6 versus 6.9 lesions/#4 bilateral). In addition, more DMBA-treated LOX-PPGln mice had increased leukocyte infiltrations in their livers and were moribund compared with DMBA-treated WT mice. Thus, these data indicate that the Arg→Gln substitution in LOX-PP could be an important marker associated with a more aggressive cancer phenotype and that this KI model is ideal for further mechanistic studies regarding the tumor suppressor function of LOX-PP.


2020 ◽  
Vol 13 (3) ◽  
pp. 585-591
Author(s):  
Luana Melo ◽  
Isabel Velasco ◽  
Julia Aquino ◽  
Rosangela Rodrigues ◽  
Edris Lopes ◽  
...  

Fibropapillomatosis is a neoplastic disease that affects sea turtles. It is characterized by multiple papillomas, fibropapillomas and cutaneous and/or visceral fibromas. Although its etiology has not been fully elucidated, it is known that there is a strong involvement of an alpha - herpesvirus, but the influence of other factors such as parasites, genetics, chemical carcinogens, contaminants, immunosuppression and ultraviolet radiation may be important in the disease, being pointed out as one of the main causes of a reduction in the green turtle population. Thus, the objective of this article was to describe the morphology of cutaneous fibropapillomas found in specimens of the green turtle (Chelonia mydas), using light and scanning electron microscopy in order to contribute to the mechanism of tumor formation. Microscopically, it presented hyperplastic stromal proliferation and epidermal proliferation with hyperkeratosis. The bulky mass was coated with keratin, with some keratinocyte invaginations, that allowed the keratin to infiltrate from the epidermis into the dermis, forming large keratinized circular spirals. Another fact that we observed was the influence of the inflammation of the tumors caused by ectoparasites.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii63-ii63
Author(s):  
Lakshmi Bollu ◽  
Derek Wainwright ◽  
Lijie Zhai ◽  
Erik Ladomersky ◽  
Kristen Lauing ◽  
...  

Abstract INTRODUCTION Indoleamine 2,3-dioxygenase 1 (IDO; IDO1) is a rate-limiting enzyme that metabolizes the essential amino acid tryptophan into kynurenine. Recent work by our group has revealed that IDO promotes tumor development and suppresses immune cell functions independent of its enzyme activity. Moreover, pharmacologic IDO enzyme inhibitors that currently serve as the only class of drugs available for targeting immunosuppressive IDO activity, fail to improve the survival of patients with GBM. Here, we developed IDO-Proteolysis Targeting Chimeras (IDO-PROTACs). PROTACs bind to a specific protein and recruit an E3 ubiquitin ligase that enhance proteasome-mediated degradation of the target protein. METHODS A library of ≥100 IDO-PROTACs were developed by joining BMS986205 (IDO binder) with a linker group to various E3-ligase ligands. Western blot analysis of PROTAC-induced IDO degradation was tested in vitro among multiple human and mouse GBM cell lines including U87, GBM6, GBM43 and GL261 along a time course ranging between 1–96 hours of treatment and at varying concentrations. The mechanism of IDO protein degradation was investigated using pharmacologic ligands that inhibit or compete with the proteasome-mediated protein degradation pathway. RESULTS Primary screening identified several IDO-PROTACs with IDO protein degradation potential. Secondary screening showed that our lead compound has a DC50 value of ~0.5µM with an ability to degrade IDO in all GBM cells analyzed, and an initial activity within 12 hours of treatment that extended for up to 96 hours. Mutating the CRBN-binding ligand, pretreatment with the ubiquitin proteasome system inhibitors MG132 or MLN4924 or using unmodified parental compound all inhibited IDO protein degradation. CONCLUSIONS This study developed an initial IDO-PROTAC technology that upon further optimization, can neutralize both IDO enzyme and non-enzyme immunosuppressive effects. When combined with other forms of immunotherapy, IDO-PROTACs have the potential to substantially enhance immunotherapeutic efficacy in patients with GBM.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 939
Author(s):  
Marcelo Ehrlich ◽  
Eran Bacharach

Cell autonomous immunity genes mediate the multiple stages of anti-viral defenses, including recognition of invading pathogens, inhibition of viral replication, reprogramming of cellular metabolism, programmed-cell-death, paracrine induction of antiviral state, and activation of immunostimulatory inflammation. In tumor development and/or immunotherapy settings, selective pressure applied by the immune system results in tumor immunoediting, a reduction in the immunostimulatory potential of the cancer cell. This editing process comprises the reduced expression and/or function of cell autonomous immunity genes, allowing for immune-evasion of the tumor while concomitantly attenuating anti-viral defenses. Combined with the oncogene-enhanced anabolic nature of cancer-cell metabolism, this attenuation of antiviral defenses contributes to viral replication and to the selectivity of oncolytic viruses (OVs) towards malignant cells. Here, we review the manners by which oncogene-mediated transformation and tumor immunoediting combine to alter the intracellular milieu of tumor cells, for the benefit of OV replication. We also explore the functional connection between oncogenic signaling and epigenetic silencing, and the way by which restriction of such silencing results in immune activation. Together, the picture that emerges is one in which OVs and epigenetic modifiers are part of a growing therapeutic toolbox that employs activation of anti-tumor immunity for cancer therapy.


Author(s):  
Fabiola De Marchi ◽  
◽  
Claudia Carrarini ◽  
Antonio De Martino ◽  
Luca Diamanti ◽  
...  

Abstract Background and aim Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the degeneration of both upper and lower motoneurons in the brain and spinal cord leading to motor and extra-motor symptoms. Although traditionally considered a pure motor disease, recent evidences suggest that ALS is a multisystem disorder. Neuropsychological alterations, in fact, are observed in more than 50% of patients: while executive dysfunctions have been firstly identified, alterations in verbal fluency, behavior, and pragmatic and social cognition have also been described. Detecting and monitoring ALS cognitive and behavioral impairment even at early disease stages is likely to have staging and prognostic implications, and it may impact the enrollment in future clinical trials. During the last 10 years, humoral, radiological, neurophysiological, and genetic biomarkers have been reported in ALS, and some of them seem to potentially correlate to cognitive and behavioral impairment of patients. In this review, we sought to give an up-to-date state of the art of neuropsychological alterations in ALS: we will describe tests used to detect cognitive and behavioral impairment, and we will focus on promising non-invasive biomarkers to detect pre-clinical cognitive decline. Conclusions To date, the research on humoral, radiological, neurophysiological, and genetic correlates of neuropsychological alterations is at the early stage, and no conclusive longitudinal data have been published. Further and longitudinal studies on easily accessible and quantifiable biomarkers are needed to clarify the time course and the evolution of cognitive and behavioral impairments of ALS patients.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3294
Author(s):  
Wen-Sy Tsai ◽  
Tsung-Fu Hung ◽  
Jia-Yang Chen ◽  
Shu-Huan Huang ◽  
Ying-Chih Chang

Background: This study used NeuN transgenic (NTTg) mice with spontaneous breast tumor development to evaluate the dynamic changes of circulating tumor cells (CTCs) prior to and during tumor development. Methods: In this longitudinal, clinically uninterrupted study, we collected 75 μL of peripheral blood at the age of 8, 12, 16, and 20 weeks in the first group of five mice, and at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability in the second group of four mice. Diluted blood samples were run through a modified mouse-CMx chip to isolate the CTCs. Results: The CTC counts of the first group of mice were low (1 ± 1.6) initially. The average CTC counts were 16 ± 9.5, 29.0 ± 18.2, and 70.0 ± 30.3 cells per 75 μL blood at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability, respectively. There was a significant positive correlation between an increase in CTC levels and tumor vascular density (p-value < 0.01). This correlation was stronger than that between CTC levels and tumor size (p-value = 0.076). The captured CTCs were implanted into a non-tumor-bearing NTTg mouse for xenografting, confirming their viability and tumorigenesis. Conclusion: Serial CTCs during an early stage of tumor progression were quantified and found to be positively correlated with the later tumor vascular density and size. Furthermore, the successful generation of CTC-derived xenografts indicates the tumorigenicity of this early onset CTC population.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
I Chaikovsky ◽  
A Popov ◽  
D Fogel ◽  
A Kazmirchyk

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): National Academy of Science of Ukraine Background Electrocardiogram (ECG) is still the primary source for the diagnostic and prognostic information about cardiovascular diseases. The concept of "normal ECG" parameters is crucial for the reliable diagnosis, since it provides reference for the ECG under examination. With the development of new methods and tools for ECG feature extraction and classification based on artificial intelligence (AI), it becomes possible to identify subtle changes in the heart activity to detect  possible abnormalities at the early stage.  The challenge of this work is to identify the deviations in  ECG of clinically healthy persons  from the conditional "population" norm . Methods The normal ECG is described as a feature vector composed of the time-magnitude parameters of signal-averaged ECG (SAECG). To define the subjects that possibly have variations from the "population" norm, the outlier detection approach is proposed: first the cloud of the vectors , constructed from the set of normal ECG"s , obtained from  young, clinically similar healthy persons  was created in feature space. Then, a particular ECG is considered deviant and requires the attention of the clinician when it is considered an outlier of the cloud of normal ECGs. In the experiment, SAECGs from the group of 139 young subjects (male, age 18-28  years) with no reported cardiovascular problems are used to extract 34 features from SAECG leads (magnitudes and durations of ECG waves, duration of ECG segments, etc.). ECGs were routinely previewed by qualified physicians, and no obvious anomalies were noticed. The Isolation Forest anomaly detection method is used with variable numbers of trees and different contamination parameters.  Results The ratio of outliers were changed from 5 to 10% (7-12 subjects) with various numbers of estimator trees. Seven outlier SAECGs were repeatedly appearing for various settings. Out of these, 4 subjects were the oldest persons in group examined , and 3 others had a rare ventricular premature beats during routine ECG examination. Conclusion The proposed method is promising for application in routine and express ECG tests since it is able to quantify the subtle deviations from the normal ECG group.


2017 ◽  
Vol 18 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Andres Morales La Madrid ◽  
Mark W. Kieran

Central nervous system (CNS) tumors represent the second most prevalent group of cancers in children and adolescents, yet account for the majority of childhood cancer-related deaths and considerable morbidity among survivors, due to high-intensity non-selective standard therapies delivered to immature nervous system structures undergoing development. These tumors arise at different ages –not infrequently very early in life-, in different locations and cellular contexts, have varied cell types of origin, and have heterogeneous responses to the “classic” current therapeutic approaches. Demographic, radiologic and morphological characterization have several limitations, putting into the “classic boxes” heterogeneous tumors that are diverse in their genetic and epigenetic background and that will likely behave biologically different. Given that, epigenetic disruption (i.e. DNA methylation, histone modification and chromatin remodeling) is a common feature identified more and more frequently in pediatric cancer, it is logical to speculate that interrogating epigenetic marks may help to further define the molecular profile, and therefore tumor biology, evolution and treatment of these tumors. An integrated approach that incorporates traditional features complemented with genetic and epigenenetic specific markers offers tremendous promise to “risk-group” stratification and better prognostication. Also, it will help unveil the key driver pathways for tumor formation and for the discovery of targeted therapy for neoplasms that appear in the developing brain, facilitating early identification of therapy responders and track accurately disease progression. In this paper, we reviewed the most representative pediatric brain tumors where epigenetic alterations have been identified as initiating or driving events in tumor development, maintenance or progression.


Sign in / Sign up

Export Citation Format

Share Document