scholarly journals In silico comparative genomics of SARS-CoV-2 to determine the source and diversity of the pathogen in Bangladesh

2020 ◽  
Author(s):  
Tushar Ahmed Shishir ◽  
Iftekhar Bin Naser ◽  
Shah M. Faruque

AbstractThe COVID19 pandemic caused by SARS-CoV-2 virus has severely affected most countries of the world including Bangladesh. We conducted comparative analysis of publicly available whole-genome sequences of 64 SARS-CoV-2 isolates in Bangladesh and 371 isolates from another 27 countries to predict possible transmission routes of COVID19 to Bangladesh and genomic variations among the viruses. Phylogenetic analysis indicated that the pathogen was imported in Bangladesh from multiple countries. The viruses found in the southern district of Chattogram were closely related to strains from Saudi Arabia whereas those in Dhaka were similar to that of United Kingdom and France. The 64 SARS-CoV-2 sequences from Bangladesh belonged to three clusters. Compared to the ancestral SARS-CoV-2 sequence reported from China, the isolates in Bangladesh had a total of 180 mutations in the coding region of the genome, and 110 of these were missense. Among these, 99 missense mutations (90%) were predicted to destabilize protein structures. Remarkably, a mutation that leads to an I300F change in the nsp2 protein and a mutation leading to D614G change in the spike protein were prevalent in SARS-CoV-2 genomic sequences, and might have influenced the epidemiological properties of the virus in Bangladesh.

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245584
Author(s):  
Tushar Ahmed Shishir ◽  
Iftekhar Bin Naser ◽  
Shah M. Faruque

The COVID19 pandemic caused by SARS-CoV-2 virus has severely affected most countries of the world including Bangladesh. We conducted comparative analysis of publicly available whole-genome sequences of 64 SARS-CoV-2 isolates in Bangladesh and 371 isolates from another 27 countries to predict possible transmission routes of COVID19 to Bangladesh and genomic variations among the viruses. Phylogenetic analysis indicated that the pathogen was imported in Bangladesh from multiple countries. The viruses found in the southern district of Chattogram were closely related to strains from Saudi Arabia whereas those in Dhaka were similar to that of United Kingdom and France. The 64 SARS-CoV-2 sequences from Bangladesh belonged to three clusters. Compared to the ancestral SARS-CoV-2 sequence reported from China, the isolates in Bangladesh had a total of 180 mutations in the coding region of the genome, and 110 of these were missense. Among these, 99 missense mutations (90%) were predicted to destabilize protein structures. Remarkably, a mutation that leads to an I300F change in the nsp2 protein and a mutation leading to D614G change in the spike protein were prevalent in SARS-CoV-2 genomic sequences, and might have influenced the epidemiological properties of the virus in Bangladesh.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1803
Author(s):  
Jitendra Singh ◽  
Anvita Gupta Malhotra ◽  
Debasis Biswas ◽  
Prem Shankar ◽  
Leena Lokhande ◽  
...  

India experienced a tragic second wave after the end of March 2021, which was far more massive than the first wave and was driven by the emergence of the novel delta variant (B.1.617.2) of the SARS-CoV-2 virus. In this study, we explored the local and national landscape of the viral variants in the period immediately preceding the second wave to gain insight into the mechanism of emergence of the delta variant and thus improve our understanding of the causation of the second wave. We randomly selected 20 SARS-CoV-2 positive samples diagnosed in our lab between 3 February and 8 March 2021 and subjected them to whole genome sequencing. Nine of the 20 sequenced genomes were classified as kappa variant (B.1.617.1). The phylogenetic analysis of pan-India SARS-CoV-2 genome sequences also suggested the gradual replacement of the α variant with the kappa variant during this period. This relative consolidation of the kappa variant was significant, since it shared 3 of the 4 signature mutations (L452R, E484Q and P681R) observed in the spike protein of delta variant and thus was likely to be the precursor in its evolution. This study demonstrates the predominance of the kappa variant in the period immediately prior to the second wave and underscores its role as the “bridging variant” between the α and delta variants that drove the first and second waves of COVID-19 in India, respectively.


2020 ◽  
Author(s):  
Seong-Tshool Hong ◽  
Md. Mehedi Hassan ◽  
Shirina Sharmin ◽  
Jinny Hong ◽  
Hoi-Seon Lee ◽  
...  

Abstract SARS-CoV-2 has been spreading remarkedly fast around the world since its emergence while the origin of the virus remains ambiguous. Here, we constructed all of the original prototype genome sequences of SARS-CoV-2 by selecting the common nucleotide among the different virus strains with species. Phylogenetic analysis on the prototype sequences showed that SARS-CoV-2 was a direct descendant of Bat-CoV and was closely related to Pan-CoV, Bat-SL-CoV, and SARS-CoV. The pairwise comparison of SARS-CoV-2 with Bat-CoV showed an unusual replacement of the motif consisting of 7 amino acids within the spike protein of SARS-CoV-2. Database searches showed that the motif originated from a surface protein of Plasmodium malariae, suggesting that the SARS-CoV-2 was emerged after acquiring the motif of the malaria surface protein.


mSystems ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Dalong Hu ◽  
Zhiqiu Yin ◽  
Chao Yuan ◽  
Pan Yang ◽  
Chengqian Qian ◽  
...  

ABSTRACT The 7th cholera pandemic began in 1961 in Sulawesi, Indonesia, and then spread around the world in at least three waves. However, the lack of genome sequences for Vibrio cholerae strains under long-term surveillance in East Asia, especially in China, has restricted our understanding of the dynamics of the intracountry and intercountry evolution and transmission of the 7th-pandemic clones. In this study, we obtained the genome sequences of 60 V. cholerae strains isolated in Shanghai, the largest port in the world and the largest city in China, from 1961 to 2011. Our whole-genome-based phylogeny of 7th-pandemic strains revealed that all but one fell into five “stages,” most of which are single clades and share independent ancestors. Each stage dominated in succession for a period, with little overlap between them. In addition, two near-identical Shanghai strains belonging to a pre-7th-pandemic precursor and 4 nontoxigenic O1/O139 strains attributed to independent recombination events at the O-antigen loci were present. The major lineages of the 7th pandemic in Shanghai appeared to be closely related to V. cholerae strains isolated from South or Southeast Asia. Stage succession was consistently related to changes in society and human activity, implying that human-caused niche change may play a vital role in the cholera dynamics in Shanghai. IMPORTANCE V. cholerae is the causative agent of cholera, a life-threatening disease characterized by severe, watery diarrhea. The 7th pandemic started in Indonesia in 1961 and spread globally, currently infecting 1.3 million to 4 million people annually. Here, we applied whole-genome sequencing to analyze a long-term collection of V. cholerae clinical strains to reveal the phylogenetic background and evolutionary dynamics of the 7th pandemic in Shanghai, which had undergone breathtakingly rapid development in the last half-century. All but one of the Shanghai 7th-pandemic strains fell into five “stages” that were dominant in Shanghai and appeared to be closely related to 7th-pandemic strains of South or Southeast Asia. Our findings extended the understanding of the dynamics of the evolution and transmission of the 7th-pandemic clones in East Asia and the relationship between social changes and cholera epidemiology.


2020 ◽  
Author(s):  
Liam Brierley ◽  
Anna Fowler

AbstractThe COVID-19 pandemic has demonstrated the serious potential for novel zoonotic coronaviruses to emerge and cause major outbreaks. The immediate animal origin of the causative virus, SARS-CoV-2, remains unknown, a notoriously challenging task for emerging disease investigations. Coevolution with hosts leads to specific evolutionary signatures within viral genomes that can inform likely animal origins. We obtained a set of 650 spike protein and 511 whole genome nucleotide sequences from 225 and 187 viruses belonging to the family Coronaviridae, respectively. We then trained random forest models independently on genome composition biases of spike protein and whole genome sequences, including dinucleotide and codon usage biases in order to predict animal host (of nine possible categories, including human). In hold-one-out cross-validation, predictive accuracy on unseen coronaviruses consistently reached ∼73%, indicating evolutionary signal in spike proteins to be just as informative as whole genome sequences. However, different composition biases were informative in each case. Applying optimised random forest models to classify human sequences of MERS-CoV and SARS-CoV revealed evolutionary signatures consistent with their recognised intermediate hosts (camelids, carnivores), while human sequences of SARS-CoV-2 were predicted as having bat hosts (suborder Yinpterochiroptera), supporting bats as the suspected origins of the current pandemic. In addition to phylogeny, variation in genome composition can act as an informative approach to predict emerging virus traits as soon as sequences are available. More widely, this work demonstrates the potential in combining genetic resources with machine learning algorithms to address long-standing challenges in emerging infectious diseases.


2021 ◽  
Author(s):  
Artem Nemudryi ◽  
Anna Nemudraia ◽  
Tanner Wiegand ◽  
Joseph Nichols ◽  
Deann T Snyder ◽  
...  

AbstractOver 200,000 whole genome sequences of SARS-CoV-2 have been determined for viruses isolated from around the world. These sequences have been critical for understanding the spread and evolution of SARS-CoV-2. Using global phylogenomics, we show that mutations frequently occur in the C-terminal end of ORF7a. We have isolated one of these mutant viruses from a patient sample and used viral chal-lenge experiments to demonstrate that Δ115 mutation results in a growth defect. ORF7a has been implicated in immune modulation, and we show that the C-terminal truncation results in distinct changes in interferon stimulated gene expression. Collectively, this work indicates that ORF7a mutations occur frequently and that these changes affect viral mechanisms responsible for suppressing the immune response.HighlightsORF7a mutations are found in SARS-CoV-2 genomes isolated from around the globe.ORF7a mutation results in a replication defect.An ORF7a mutation limits viral suppression of the interferon response.


2020 ◽  
Author(s):  
Babatunde Olarenwaju Motayo ◽  
Olukunle Oluwapamilerin Oluwasemowo ◽  
Paul Akiniyi Akinduti ◽  
Babatunde Adebiyi Olusola ◽  
Olumide T Aerege ◽  
...  

ABSTRACTThe ongoing SARSCoV-2 pandemic was introduced into Africa on 14th February 2020 and has rapidly spread across the continent causing severe public health crisis and mortality. We investigated the genetic diversity and evolution of this virus during the early outbreak months using whole genome sequences. We performed; recombination analysis against closely related CoV, Bayesian time scaled phylogeny and investigated spike protein amino acid mutations. Results from our analysis showed recombination signals between the AfrSARSCoV-2 sequences and reference sequences within the N and S genes. The evolutionary rate of the AfrSARSCoV-2 was 4.133 × 10−4 high posterior density HPD (4.132 × 10−4 to 4.134 × 10−4) substitutions/site/year. The time to most recent common ancestor TMRCA of the African strains was December 7th 2019. The AfrSARCoV-2 sequences diversified into two lineages A and B with B being more diverse with multiple sub-lineages confirmed by both maximum clade credibility MCC tree and PANGOLIN software. There was a high prevalence of the D614-G spike protein amino acid mutation (82.61%) among the African strains. Our study has revealed a rapidly diversifying viral population with the G614 spike protein variant dominating, we advocate for up scaling NGS sequencing platforms across Africa to enhance surveillance and aid control effort of SARSCoV-2 in Africa.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0258019
Author(s):  
Ishtiaque Ahammad ◽  
Mohammad Uzzal Hossain ◽  
Anisur Rahman ◽  
Zeshan Mahmud Chowdhury ◽  
Arittra Bhattacharjee ◽  
...  

As the COVID-19 pandemic continues to ravage across the globe and take millions of lives and like many parts of the world, the second wave of the pandemic hit Bangladesh, this study aimed at understanding its causative agent, SARS-CoV-2 at the genomic and proteomic level and provide precious insights about the pathogenesis, evolution, strengths and weaknesses of the virus. As of Mid-June 2021, over 1500 SARS-CoV-2 genomesequences have been deposited in the GISAID database from Bangladesh which were extracted and categorized into two waves. By analyzing these genome sequences, it was discovered that the wave-2 samples had a significantly greater average rate of mutation/sample (30.79%) than the wave-1 samples (12.32%). Wave-2 samples also had a higher frequency of deletion, and transversion events. During the first wave, the GR clade was the most predominant but it was replaced by the GH clade in the latter wave. The B.1.1.25 variant showed the highest frequency in wave-1 while in case of wave-2, the B.1.351.3 variant, was the most common one. A notable presence of the delta variant, which is currently at the center of concern, was also observed. Comparison of the Spike protein found in the reference and the 3 most common lineages found in Bangladesh namely, B.1.1.7, B.1.351, B.1.617 in terms of their ability to form stable complexes with ACE2 receptor revealed that B.1.617 had the potential to be more transmissible than others. Importantly, no indigenous variants have been detected so far which implies that the successful prevention of import of foreign variants can diminish the outbreak in the country.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 61 ◽  
Author(s):  
Jianghong Li ◽  
Tingyun Wang ◽  
Jay Evans ◽  
Robyn Rose ◽  
Yazhou Zhao ◽  
...  

RNA viruses that contain single-stranded RNA genomes of positive sense make up the largest group of pathogens infecting honey bees. Sacbrood virus (SBV) is one of the most widely distributed honey bee viruses and infects the larvae of honey bees, resulting in failure to pupate and death. Among all of the viruses infecting honey bees, SBV has the greatest number of complete genomes isolated from both European honey bees Apis mellifera and Asian honey bees A. cerana worldwide. To enhance our understanding of the evolution and pathogenicity of SBV, in this study, we present the first report of whole genome sequences of two U.S. strains of SBV. The complete genome sequences of the two U.S. SBV strains were deposited in GenBank under accession numbers: MG545286.1 and MG545287.1. Both SBV strains show the typical genomic features of the Iflaviridae family. The phylogenetic analysis of the single polyprotein coding region of the U.S. strains, and other GenBank SBV submissions revealed that SBV strains split into two distinct lineages, possibly reflecting host affiliation. The phylogenetic analysis based on the 5′UTR revealed a monophyletic clade with the deep parts of the tree occupied by SBV strains from both A. cerane and A. mellifera, and the tips of branches of the tree occupied by SBV strains from A. mellifera. The study of the cold stress on the pathogenesis of the SBV infection showed that cold stress could have profound effects on sacbrood disease severity manifested by increased mortality of infected larvae. This result suggests that the high prevalence of sacbrood disease in early spring may be due to the fluctuating temperatures during the season. This study will contribute to a better understanding of the evolution and pathogenesis of SBV infection in honey bees, and have important epidemiological relevance.


Author(s):  
Hu Xu ◽  
Chao Li ◽  
Wansheng Li ◽  
Jing Zhao ◽  
Bangjun Gong ◽  
...  

NADC34-like PRRSV strains were first detected in China in 2017, with epidemic potential. In this study, the phylogenetic, epidemic, and recombinant properties of NADC34-like PRRSV in China were evaluated comprehensively. From 2020 to October 2021, 82 NADC34-like PRRSV isolates were obtained from 433 PRRSV-positive clinical samples. These strains accounted for 11.5% and 28.6% of positives in 2020 and 2021, respectively, and have spread to eight provinces. We selected 15 samples for whole-genome sequencing, revealing genome lengths of 15,009 to 15,113 nt. Phylogenetic analysis revealed that Chinese NADC34-like strains cluster with American sublineage 1.5 strains and do not form an independent branch. Recombination analysis revealed that six of fifteen complete genome sequences derived from recombination between NADC34-like and NADC30-like or HP-PRRSV; they all recombined with local strains in China, exhibiting a complex recombination pattern. Partial Nsp2 sequence alignment showed that nine of fifteen isolates have a continuous 100-aa deletion (similar to IA/2014/NADC34); other isolates have a 131-aa discontinuity deletion (similar to NADC30). Five of them also have additional amino acid deletions, all of which are reported for the first time here. In the last two years, NADC34-like PRRSV has become one of the main epidemic strains in some areas of China; it has changed significantly, its homology has decreased significantly, and it has undergone complex recombination with local Chinese strains. These results are of great significance for understanding the current epidemic situation of PRRSV in China.


Sign in / Sign up

Export Citation Format

Share Document