scholarly journals CRISPR Turbo Accelerated Knock Out (CRISPy TAKO) for rapid in vivo screening of gene function

Author(s):  
SL Plasil ◽  
A Seth ◽  
GE Homanics

AbstractThe development of CRISPR/Cas9 technology has vastly sped up the process of genome editing by introducing a bacterial system that can be exploited for reverse genetics-based research. However, generating homozygous knockout (KO) animals using traditional CRISPR/Cas9-mediated techniques requires three generations of animals. A founder animal with a desired mutation is crossed to produce heterozygous F1 offspring which are subsequently interbred to generate homozygous F2 KO animals. This study describes a novel adaptation of the CRISPR/Cas9-mediated method to develop a homozygous gene-targeted KO animal cohort in one generation. A well-characterized ethanol-responsive gene, MyD88, was chosen as a candidate gene for generation of MyD88-/- mice as proof of concept. Previous studies have reported changes in ethanol-related behavioral outcomes in MyD88 KO mice. Therefore, it was hypothesized that a successful one-generation KO of MyD88 should reproduce decreased responses to ethanols sedative effects, as well as increased ethanol consumption in males that were observed in previous studies. One-cell mouse embryos were simultaneously electroporated with four gRNAs targeting a critical Exon of MyD88 along with Cas9. DNA and RNA analysis of founder mice revealed a complex mix of genetic alterations, all of which were predicted to ablate MyD88 gene function. This study additionally compared responses of Mock treatment control mice generated through electroporation to controls purchased from a vendor. No substantial behavioral changes were noted between control cohorts. Overall, the CRISPR/Cas9 KO protocol reported here, which we call CRISPR Turbo Accelerated KnockOut (CRISPy TAKO), will be useful for reverse genetic in vivo screens of gene function in whole animals.


2020 ◽  
Vol 295 (15) ◽  
pp. 4761-4772 ◽  
Author(s):  
Emma Rose Scaletti ◽  
Karl S. Vallin ◽  
Lars Bräutigam ◽  
Antonio Sarno ◽  
Ulrika Warpman Berglund ◽  
...  

MutT homologue 1 (MTH1) removes oxidized nucleotides from the nucleotide pool and thereby prevents their incorporation into the genome and thereby reduces genotoxicity. We previously reported that MTH1 is an efficient catalyst of O6-methyl-dGTP hydrolysis suggesting that MTH1 may also sanitize the nucleotide pool from other methylated nucleotides. We here show that MTH1 efficiently catalyzes the hydrolysis of N6-methyl-dATP to N6-methyl-dAMP and further report that N6-methylation of dATP drastically increases the MTH1 activity. We also observed MTH1 activity with N6-methyl-ATP, albeit at a lower level. We show that N6-methyl-dATP is incorporated into DNA in vivo, as indicated by increased N6-methyl-dA DNA levels in embryos developed from MTH1 knock-out zebrafish eggs microinjected with N6-methyl-dATP compared with noninjected embryos. N6-methyl-dATP activity is present in MTH1 homologues from distantly related vertebrates, suggesting evolutionary conservation and indicating that this activity is important. Of note, N6-methyl-dATP activity is unique to MTH1 among related NUDIX hydrolases. Moreover, we present the structure of N6-methyl-dAMP–bound human MTH1, revealing that the N6-methyl group is accommodated within a hydrophobic active-site subpocket explaining why N6-methyl-dATP is a good MTH1 substrate. N6-methylation of DNA and RNA has been reported to have epigenetic roles and to affect mRNA metabolism. We propose that MTH1 acts in concert with adenosine deaminase-like protein isoform 1 (ADAL1) to prevent incorporation of N6-methyl-(d)ATP into DNA and RNA. This would hinder potential dysregulation of epigenetic control and RNA metabolism via conversion of N6-methyl-(d)ATP to N6-methyl-(d)AMP, followed by ADAL1-catalyzed deamination producing (d)IMP that can enter the nucleotide salvage pathway.



2019 ◽  
Author(s):  
Simone Nüssing ◽  
Imran G. House ◽  
Conor J. Kearney ◽  
Stephin J. Vervoort ◽  
Paul A. Beavis ◽  
...  

AbstractCRISPR/Cas9 technologies have revolutionised our understanding of gene function in complex biological settings, including T cell immunology. Current CRISPR-mediated gene deletion strategies in T cells require in vitro stimulation or culture that can both preclude studies of gene function within unmanipulated naïve T cells and can alter subsequent differentiation. Here we demonstrate highly efficient gene deletion within uncultured primary naïve murine CD8+ T cells by electroporation of recombinant Cas9/sgRNA ribonucleoprotein immediately prior to in vivo adoptive transfer. Using this approach, we generated single and double gene knock-out cells within multiple mouse infection models. Strikingly, gene deletion occurred even when the transferred cells were left in a naïve state, suggesting that gene deletion occurs independent of T cell activation. This protocol thus expands CRISPR-based probing of gene function beyond models of robust T cell activation, to encompass both naïve T cell homeostasis and models of weak activation, such as tolerance and tumour models.



2018 ◽  
Vol 36 (6_suppl) ◽  
pp. 459-459
Author(s):  
Vasty Osei Amponsa ◽  
Zongyu Zheng ◽  
Vonn Walter ◽  
Joshua Warrick ◽  
Cathy Mendelsohn ◽  
...  

459 Background: The recent description of the highly aggressive Basal-Squamous molecular subtype of bladder cancer (BLCa) requires the development of new in vivo models for the study of this clinical entity. Although loss of the transcription factor Forkhead box A1 ( FOXA1) is significantly associated with the Basal-Squamous subtype, cooperating genetic alterations are unknown. Herein, we identify genetic alterations that potentially cooperate with FOXA1 loss to drive tumorigenesis and/or the Basal-Squamous phenotype and develop a novel transgenic model for the study of Basal-Squamous BLCa. Methods: We interrogated The Cancer Genome Atlas (TCGA) BLCa study to identify common genetic alterations associated with FOXA1 copy number (CN) loss. Based on our results, we utilized a bladder-specific Cre-LoxP ( Uroplakin II-Cre) to constitutively knock-out (KO) Foxa1 and/or Pten in mouse urothelium. Two cohorts of mice were aged for 6 and 12 months, and a third cohort was exposed to the bladder-specific carcinogen N-butyl-(4-hydroxybutyl)-nitrosamine (BBN; 0.05%) for 12 weeks. Following all experiments, the bladder tissue was isolated and characterized. Results: The TCGA data revealed that combined CN loss of both FOXA1 and PTEN occurs in 17% of MI BLCa patients. At 6 months of age, our mice developed urothelial hyperplasia, whereas at 12 months of age, double KO ( Foxa1-/-/Pten-/-) mice developed carcinoma in situ (CIS) with SqD, enriched for basal (Krt5/6 and 14) and reduced in luminal (Gata3 and Pparγ) markers. Increased tumor stage was significantly associated with combined KO of at least one allele of Foxa1 and Pten following BBN exposure. Moreover, upregulation of apoptosis related genes was observed by RNA-sequencing data. Conclusions: In advanced BLCa, CN loss of FOXA1 and PTEN is common. Genetic ablation of Foxa1 and Pten results in CIS with SqD and a pathologic profile consistent with the Basal-Squamous subtype and accelerated tumor onset following carcinogen exposure. Therefore, we describe the development of a novel model for the study of Basal-Squamous BLCa potentially useful for preclinical studies.



2021 ◽  
Vol 22 (9) ◽  
pp. 4368
Author(s):  
Heriberto Rodriguez-Martinez ◽  
Emilio A. Martinez ◽  
Juan J. Calvete ◽  
Fernando J. Peña Vega ◽  
Jordi Roca

Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA—the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.



2021 ◽  
Author(s):  
Hongsheng Men ◽  
Miriam A. Hankins ◽  
Anagha S. Bock ◽  
Benjamin P. Beaton ◽  
Daniel J. Davis ◽  
...  

AbstractMutations and single base pair polymorphisms in various genes have been associated with increased susceptibility to inflammatory bowel disease (IBD). We have created a series of rat strains carrying targeted genetic alterations within three IBD susceptibility genes: Nod2, Atg16l1, and Il23r, using CRISPR/Cas9 genome editing technology. Knock-out alleles and alleles with known human susceptibility polymorphisms were generated on three different genetic backgrounds: Fischer, Lewis and Sprague Dawley. The availability of these rat models will contribute to our understanding of the basic biological roles of these three genes as well as provide new potential IBD animal models.



Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 101054
Author(s):  
Laura Leoni ◽  
Valentina Daponte ◽  
Francesca Tonelli ◽  
Roberta Gioia ◽  
Silvia Cotti ◽  
...  
Keyword(s):  


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii62-ii62
Author(s):  
Elisa Izquierdo ◽  
Diana Carvalho ◽  
Alan Mackay ◽  
Sara Temelso ◽  
Jessica K R Boult ◽  
...  

Abstract The survival of children with diffuse intrinsic pontine glioma (DIPG) remains dismal, with new treatments desperately needed. In the era of precision medicine, targeted therapies represent an exciting treatment opportunity, yet resistance can rapidly emerge, playing an important role in treatment failure. In a prospective biopsy-stratified clinical trial, we combined detailed molecular profiling (methylation BeadArray, exome, RNAseq, phospho-proteomics) linked to drug screening in newly-established patient-derived models of DIPG in vitro and in vivo. We identified a high degree of in vitro sensitivity to the MEK inhibitor trametinib (GI50 16-50nM) in samples, which harboured genetic alterations targeting the MAPK pathway, including the non-canonical BRAF_G469V mutation, and those affecting PIK3R1 and NF1. However, treatment of PDX models and of a patient with trametinib at relapse failed to elicit a significant response. We generated trametinib-resistant clones (62-188-fold, GI50 2.4–5.2µM) in the BRAF_G469V model through continuous drug exposure, and identified acquired mutations in MEK1/2 (MEK1_K57N, MEK1_I141S and MEK2_I115N) with sustained pathway up-regulation. These cells showed the hallmarks of mesenchymal transition, and expression signatures overlapping with inherently trametinib-insensitive primary patient-derived cells that predicted an observed sensitivity to dasatinib. Combinations of trametinib with dasatinib and the downstream ERK inhibitor ulixertinib showed highly synergistic effects in vitro. These data highlight the MAPK pathway as a therapeutic target in DIPG, and show the importance of parallel resistance modelling and rational combinatorial treatments likely to be required for meaningful clinical translation.



2021 ◽  
Vol 22 (10) ◽  
pp. 5321
Author(s):  
Viktoria Constanze Brücher ◽  
Charlotte Egbring ◽  
Tanja Plagemann ◽  
Pavel I. Nedvetsky ◽  
Verena Höffken ◽  
...  

The WWC protein family is an upstream regulator of the Hippo signalling pathway that is involved in many cellular processes. We examined the effect of an endothelium-specific WWC1 and/or WWC2 knock-out on ocular angiogenesis. Knock-outs were induced in C57BL/6 mice at the age of one day (P1) and evaluated at P6 (postnatal mice) or induced at the age of five weeks and evaluated at three months of age (adult mice). We analysed morphology of retinal vasculature in retinal flat mounts. In addition, in vivo imaging and functional testing by electroretinography were performed in adult mice. Adult WWC1/2 double knock-out mice differed neither functionally nor morphologically from the control group. In contrast, the retinas of the postnatal WWC knock-out mice showed a hyperproliferative phenotype with significantly enlarged areas of sprouting angiogenesis and a higher number of tip cells. The branching and end points in the peripheral plexus were significantly increased compared to the control group. The deletion of the WWC2 gene was decisive for these effects; while knocking out WWC1 showed no significant differences. The results hint strongly that WWC2 is an essential regulator of ocular angiogenesis in mice. As an activator of the Hippo signalling pathway, it prevents excessive proliferation during physiological angiogenesis. In adult animals, WWC proteins do not seem to be important for the maintenance of the mature vascular plexus.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Feng Li ◽  
Wenting Yu ◽  
Jiaojiao Zhang ◽  
Yuhang Dong ◽  
Xiaohui Ding ◽  
...  

AbstractDNA nanostructures have been demonstrated as promising carriers for gene delivery. In the carrier design, spatiotemporally programmable assembly of DNA under nanoconfinement is important but has proven highly challenging due to the complexity–scalability–error of DNA. Herein, a DNA nanotechnology-based strategy via the cascade hybridization chain reaction (HCR) of DNA hairpins in polymeric nanoframework has been developed to achieve spatiotemporally programmable assembly of DNA under nanoconfinement for precise siRNA delivery. The nanoframework is prepared via precipitation polymerization with Acrydite-DNA as cross-linker. The potential energy stored in the loops of DNA hairpins can overcome the steric effect in the nanoframework, which can help initiate cascade HCR of DNA hairpins and achieve efficient siRNA loading. The designer tethering sequence between DNA and RNA guarantees a triphosadenine triggered siRNA release specifically in cellular cytoplasm. Nanoframework provides stability and ease of functionalization, which helps address the complexity–scalability–error of DNA. It is exemplified that the phenylboronate installation on nanoframework enhanced cellular uptake and smoothed the lysosomal escape. Cellular results show that the siRNA loaded nanoframework down-regulated the levels of relevant mRNA and protein. In vivo experiments show significant therapeutic efficacy of using siPLK1 loaded nanoframework to suppress tumor growth.



Sign in / Sign up

Export Citation Format

Share Document