scholarly journals Reduction of a stochastic model of gene expression: Lagrangian dynamics gives access to basins of attraction as cell types and metastabilty

2020 ◽  
Author(s):  
Elias Ventre ◽  
Thibault Espinasse ◽  
Charles-Edouard Bréhier ◽  
Vincent Calvez ◽  
Thomas Lepoutre ◽  
...  

AbstractDifferentiation is the process whereby a cell acquires a specific phenotype, by differential gene expression as a function of time. This is thought to result from the dynamical functioning of an underlying Gene Regulatory Network (GRN). The precise path from the stochastic GRN behavior to the resulting cell state is still an open question. In this work we propose to reduce a stochastic model of gene expression, where a cell is represented by a vector in a continuous space of gene expression, to a discrete coarse-grained model on a limited number of cell types. We develop analytical results and numerical tools to perform this reduction for a specific model characterizing the evolution of a cell by a system of piecewise deterministic Markov processes (PDMP). Solving a spectral problem, we find the explicit variational form of the rate function associated to a Large deviations principle, for any number of genes. The resulting Lagrangian dynamics allows us to define a deterministic limit, the basins of attraction of which can be identified to cellular types. In this context the quasipotential, describing the transitions between these basins in the weak noise limit, can be defined as the unique solution of an Hamilton-Jacobi equation under a particular constraint. We develop a numerical method for approximating the coarse-grained model parameters, and show its accuracy for a symmetric toggle-switch network. We deduce from the reduced model an analytical approximation of the stationary distribution of the PDMP system, which appears as a beta mixture. Altogether those results establish a rigorous frame for connecting GRN behavior to the resulting cellular behavior, including the calculation of the probability of jumps between cell types.

2019 ◽  
Author(s):  
Elham Ahmadzadeh ◽  
N. Sumru Bayin ◽  
Xinli Qu ◽  
Aditi Singh ◽  
Linda Madisen ◽  
...  

AbstractThanks to many advances in genetic manipulation, mouse models have become very powerful in their ability to interrogate biological processes. In order to precisely target expression of a gene of interest to particular cell types, intersectional genetic approaches utilizing two promoter/enhancers unique to a cell type are ideal. Within these methodologies, variants that add temporal control of gene expression are the most powerful. We describe the development, validation and application of an intersectional approach that involves three transgenes, requiring the intersection of two promoter/enhancers to target gene expression to precise cell types. Furthermore, the approach utilizes available lines expressing tTA/rTA to control timing of gene expression based on whether doxycycline is absent or present, respectively. We also show that the approach can be extended to other animal models, using chicken embryos. We generated three mouse lines targeted at the Tigre (Igs7) locus with TRE-loxP-tdTomato-loxP upstream of three genes (p21, DTA and Ctgf) and combined them with Cre and tTA/rtTA lines that target expression to the cerebellum and limbs. Our tools will facilitate unraveling biological questions in multiple fields and organisms.Summary statementAhmadzadeh et al. present a collection of four mouse lines and genetic tools for misexpression-mediated manipulation of cellular activity with high spatiotemporal control, in a reversible manner.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ana J. Chucair-Elliott ◽  
Sarah R. Ocañas ◽  
David R. Stanford ◽  
Victor A. Ansere ◽  
Kyla B. Buettner ◽  
...  

AbstractEpigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific central nervous system cell types. Analysis of gene expression and DNA modifications in astrocytes or microglia from the same animal demonstrates differential usage of DNA methylation and hydroxymethylation in CpG and non-CpG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any brain cell type for which a cell type-specific cre is available.


2017 ◽  
Vol 115 (2) ◽  
pp. E302-E309 ◽  
Author(s):  
Noriko Itoh ◽  
Yuichiro Itoh ◽  
Alessia Tassoni ◽  
Emily Ren ◽  
Max Kaito ◽  
...  

Changes in gene expression that occur across the central nervous system (CNS) during neurological diseases do not address the heterogeneity of cell types from one CNS region to another and are complicated by alterations in cellular composition during disease. Multiple sclerosis (MS) is multifocal by definition. Here, a cell-specific and region-specific transcriptomics approach was used to determine gene expression changes in astrocytes in the most widely used MS model, experimental autoimmune encephalomyelitis (EAE). Astrocyte-specific RNAs from various neuroanatomic regions were attained using RiboTag technology. Sequencing and bioinformatics analyses showed that EAE-induced gene expression changes differed between neuroanatomic regions when comparing astrocytes from spinal cord, cerebellum, cerebral cortex, and hippocampus. The top gene pathways that were changed in astrocytes from spinal cord during chronic EAE involved decreases in expression of cholesterol synthesis genes while immune pathway gene expression in astrocytes was increased. Optic nerve from EAE and optic chiasm from MS also showed decreased cholesterol synthesis gene expression. The potential role of cholesterol synthesized by astrocytes during EAE and MS is discussed. Together, this provides proof-of-concept that a cell-specific and region-specific gene expression approach can provide potential treatment targets in distinct neuroanatomic regions during multifocal neurological diseases.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kejie Chen ◽  
Kai-Rong Qin

Cell migration through extracellular matrices is critical to many physiological processes, such as tissue development, immunological response and cancer metastasis. Previous models including persistent random walk (PRW) and Lévy walk only explain the migratory dynamics of some cell types in a homogeneous environment. Recently, it was discovered that the intracellular actin flow can robustly ensure a universal coupling between cell migratory speed and persistence for a variety of cell types migrating in the in vitro assays and live tissues. However, effects of the correlation between speed and persistence on the macroscopic cell migration dynamics and patterns in complex environments are largely unknown. In this study, we developed a Monte Carlo random walk simulation to investigate the motility, the search ability and the search efficiency of a cell moving in both homogeneous and porous environments. The cell is simplified as a dimensionless particle, moving according to PRW, Lévy walk, random walk with linear speed-persistence correlation (linear RWSP) and random walk with nonlinear speed-persistence correlation (nonlinear RWSP). The coarse-grained analysis showed that the nonlinear RWSP achieved the largest motility in both homogeneous and porous environments. When a particle searches for targets, the nonlinear coupling of speed and persistence improves the search ability (i.e. find more targets in a fixed time period), but sacrifices the search efficiency (i.e. find less targets per unit distance). Moreover, both the convex and concave pores restrict particle motion, especially for the nonlinear RWSP and Lévy walk. Overall, our results demonstrate that the nonlinear correlation of speed and persistence has the potential to enhance the motility and searching properties in complex environments, and could serve as a starting point for more detailed studies of active particles in biological, engineering and social science fields.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4283-4283
Author(s):  
Chieh Lee Wong ◽  
Andrew Innes ◽  
Baoshan Ma ◽  
Gareth Gerrard ◽  
Zainul Abidin Norziha ◽  
...  

Abstract Introduction Despite significant progress in the understanding of the molecular pathogenesis of myeloproliferative neoplasms (MPN) and the identification of high molecular risk (HMR) genes (i.e. ASXL1, EZH2, IDH1 and IDH2 genes), the mechanisms by which different cell types predominate in the different disease subtypes and their implications for prognosis remain uncertain. Given the recently described association of senescence and fibrosis in a number of pathologies by Menoz-Espin et al, we hypothesized that genes implicated in oncogene-induced senescence (OIS) and senescence associated secretory phenotype (SASP) may contribute to the pathogenesis of these neoplastic bone marrow disorders that frequently show evidence of fibrosis. Specifically, we were interested in the gene expression levels in different disease subtypes, at a cell-type level, and whether these patterns of differential expression were distinct from the transforming JAK-STAT pathway and the HMR genes. Aim To elucidate the role of OIS and SASP genes in the pathogenesis of MPN subtypes by determining the differential expression of the genes in specific cell types in patients with MPN. Methods We performed gene expression profiling on normal controls (NC) and patients with MPN who were diagnosed with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) according to the 2008 WHO diagnostic criteria. Two cohorts of patients, the patient and validation cohorts, from 3 tertiary-level hospitals were recruited prospectively over 3 years. Peripheral blood samples were taken and sorted into polymorphonuclear cells (PMN), mononuclear cells (MNC) and T cells. RNA was extracted from each cell population. Gene expression profiling of the human transcriptome was performed using microarray and RNA sequencing on the patient and validation cohorts respectively. Gene expression analyses (GEA) were performed on 4 sets of genes derived from publicly available or custom derived gene set enrichment analysis: 92 OIS genes, 88 SASP genes (Gil et al), 4 HMR genes, and 126 genes associated with JAK-STAT pathway. Gene expression levels for each cell type in each disease were compared with NC to obtain the differential expression of the genes. RNA-seq analysis of samples from the validation cohort was used to validate the microarray results from the patient cohort. Results Twenty-eight patients (10 ET, 11 PV and 7 PMF) and 11 NC were recruited into the patient cohort. Twelve patients (4 ET, 4 PV and 4 PMF) and 4 NC were recruited into the validation cohort. After combination of the microarray and RNA-seq datasets, GEA of the OIS genes revealed the differential expressions of MCTP1 and SULT1B1 genes by PMN in PV but of none in PMF. In contrast, the BEX1 gene was identified as differentially expressed by MNC in PMF but none in PV. GEA of the SASP genes revealed differential expression of THBS1 gene by MNC in PMF but of none in PV. None of the SASP genes were differentially expressed by PMN in either PV or PMF. No differentially expressed genes were identified by PMN or MNC in ET, or by T cells in any of the diseases. Notably, GEA of the HMR genes and genes associated with the JAK-STAT pathways did not show any differential expression in any disease subtype by any cell type. Conclusions We have found strikingly distinct patterns of differential expression of senescence associated genes by PMN (in PV) and MNC (in PMF). These results provide a novel insight into the mechanisms underlying the different phenotype of the MPN subtypes and also to the cells responsible for mediating the differences. The lack of differential expression of OIS and SASP genes in ET may reflect the milder clinical phenotype of the disease. Although mutations in the HMR genes are associated with poor prognosis in PMF, the lack of differential expression in these genes and genes associated with the JAK-STAT pathway is in keeping with their mutated status and suggests that they give rise to the disease phenotypes via altering downstream expression of genes associated in other pathways such as the senescence pathways studied here. Further studies are warranted to investigate the role of these genes and the pathways involved in senescence at a cell-type specific level in order to gain further insight into how they can potentially give rise to the various disease phenotypes in MPN and unmask potential therapeutic targets. Disclosures Aitman: Illumina: Honoraria.


1999 ◽  
Vol 19 (1) ◽  
pp. 155-163 ◽  
Author(s):  
Louise E. Sivak ◽  
Geneviève Pont-Kingdon ◽  
Kim Le ◽  
Gabriele Mayr ◽  
Kuei-Fang Tai ◽  
...  

ABSTRACT Precisely regulated expression of oncogenes and tumor suppressor genes is essential for normal development, and deregulated expression can lead to cancer. The human N-myc gene normally is expressed in only a subset of fetal epithelial tissues, and its expression is extinguished in all adult tissues except transiently in pre-B lymphocytes. The N-myc gene is overexpressed due to genomic amplification in the childhood tumor neuroblastoma. In previous work to investigate mechanisms of regulation of human N-mycgene expression, we observed that N-mycpromoter–chloramphemicol acelyltransferase reporter constructs containing sequences 5′ to exon 1 were active in all cell types examined, regardless of whether endogenous N-myc RNA was detected. In contrast, inclusion of the first exon and a portion of the first intron allowed expression only in those cell types with detectable endogenous N-myc transcripts. We investigated further the mechanisms by which this tissue-specific control of N-myc expression is achieved. Using nuclear run-on analyses, we determined that the N-myc gene is actively transcribed in all cell types examined, indicating a posttranscriptional mode of regulation. Using a series of N-myc intron 1 deletion constructs, we localized a 116-bp element (tissue-specific element [TSE]) within the first intron that directs tissue-specific N-myc expression. The TSE can function independently to regulate expression of a heterologous promoter-reporter minigene in a cell-specific pattern that mirrors the expression pattern of the endogenous N-myc gene. Surprisingly, the TSE can function in both sense and antisense orientations to regulate gene expression. Our data indicate that the human N-myc TSE functions through a posttranscriptional mechanism to regulate N-myc expression.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Pauline Wales ◽  
Christian E Schuberth ◽  
Roland Aufschnaiter ◽  
Johannes Fels ◽  
Ireth García-Aguilar ◽  
...  

Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress.


2018 ◽  
Author(s):  
Heather M. Feldman ◽  
Chad M. Toledo ◽  
Sonali Arora ◽  
Pia Hoellerbauer ◽  
Philip Corrin ◽  
...  

AbstractSingle cell RNA-seq has emerged as a powerful tool for resolving cellular states associated with normal and maligned developmental processes. Here, we used scRNA-seq to examine the cell cycle states of expanding human neural stem cells (hNSCs). From this data, we created a cell cycle classifier, which, in addition to traditional cell cycle phases, also identifies a putative quiescent-like state in neuroepithelial-derived cell types during mammalian neurogenesis and in gliomas. This state, Neural G0, is enriched for expression of quiescent NSC genes and other neurodevelopmental markers found in non-dividing neural progenitors. For gliomas, Neural G0 cell populations and gene expression is significantly associated with less aggressive tumors and extended patient survival. Genetic screens to identify modulators of Neural G0 revealed that knockout of genes associated with the Hippo/Yap and p53 pathways diminished Neural G0in vitro, resulting in faster G1 transit, down regulation of quiescence-associated markers, and loss of Neural G0 gene expression. Thus, Neural G0 represents a dynamic quiescent-like state found in neuro-epithelial derived cells and gliomas.


2018 ◽  
Author(s):  
Changlin Wan ◽  
Wennan Chang ◽  
Yu Zhang ◽  
Fenil Shah ◽  
Xiaoyu Lu ◽  
...  

ABSTRACTA key challenge in modeling single-cell RNA-seq (scRNA-seq) data is to capture the diverse gene expression states regulated by different transcriptional regulatory inputs across single cells, which is further complicated by a large number of observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model that stems from the kinetic relationships between the transcriptional regulatory inputs and metabolism of mRNA and gene expression abundance in a cell. LTMG infers the expression multi-modalities across single cell entities, representing a gene’s diverse expression states; meanwhile the dropouts and low expressions are treated as left truncated, specifically representing an expression state that is under suppression. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of single-cell data sets, comparing to three other state of the art models. In addition, our systems kinetic approach of handling the low and zero expressions and correctness of the identified multimodality are validated on several independent experimental data sets. Application on data of complex tissues demonstrated the capability of LTMG in extracting varied expression states specific to cell types or cell functions. Based on LTMG, a differential gene expression test and a co-regulation module identification method, namely LTMG-DGE and LTMG-GCR, are further developed. We experimentally validated that LTMG-DGE is equipped with higher sensitivity and specificity in detecting differentially expressed genes, compared with other five popular methods, and that LTMG-GCR is capable to retrieve the gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA.


2019 ◽  
Author(s):  
Ana J. Chucair-Elliott ◽  
Sarah R. Ocañas ◽  
David R. Stanford ◽  
Victor A. Ansere ◽  
Kyla B. Buettner ◽  
...  

AbstractEpigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific CNS cell types. Paired analysis of the transcriptome and DNA modifications in astrocytes and microglia demonstrates differential usage of DNA methylation and hydroxymethylation in CG and non-CG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any CNS cell type for which a cell type-specific cre is available.


Sign in / Sign up

Export Citation Format

Share Document