scholarly journals Calcium-mediated actin reset (CaAR) mediates acute cell adaptations

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Pauline Wales ◽  
Christian E Schuberth ◽  
Roland Aufschnaiter ◽  
Johannes Fels ◽  
Ireth García-Aguilar ◽  
...  

Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress.

2020 ◽  
Vol 21 (8) ◽  
pp. 2748 ◽  
Author(s):  
Ruth Barral-Arca ◽  
Alberto Gómez-Carballa ◽  
Miriam Cebey-López ◽  
María José Currás-Tuala ◽  
Sara Pischedda ◽  
...  

There is a growing interest in unraveling gene expression mechanisms leading to viral host invasion and infection progression. Current findings reveal that long non-coding RNAs (lncRNAs) are implicated in the regulation of the immune system by influencing gene expression through a wide range of mechanisms. By mining whole-transcriptome shotgun sequencing (RNA-seq) data using machine learning approaches, we detected two lncRNAs (ENSG00000254680 and ENSG00000273149) that are downregulated in a wide range of viral infections and different cell types, including blood monocluclear cells, umbilical vein endothelial cells, and dermal fibroblasts. The efficiency of these two lncRNAs was positively validated in different viral phenotypic scenarios. These two lncRNAs showed a strong downregulation in virus-infected patients when compared to healthy control transcriptomes, indicating that these biomarkers are promising targets for infection diagnosis. To the best of our knowledge, this is the very first study using host lncRNAs biomarkers for the diagnosis of human viral infections.


2019 ◽  
Author(s):  
Elham Ahmadzadeh ◽  
N. Sumru Bayin ◽  
Xinli Qu ◽  
Aditi Singh ◽  
Linda Madisen ◽  
...  

AbstractThanks to many advances in genetic manipulation, mouse models have become very powerful in their ability to interrogate biological processes. In order to precisely target expression of a gene of interest to particular cell types, intersectional genetic approaches utilizing two promoter/enhancers unique to a cell type are ideal. Within these methodologies, variants that add temporal control of gene expression are the most powerful. We describe the development, validation and application of an intersectional approach that involves three transgenes, requiring the intersection of two promoter/enhancers to target gene expression to precise cell types. Furthermore, the approach utilizes available lines expressing tTA/rTA to control timing of gene expression based on whether doxycycline is absent or present, respectively. We also show that the approach can be extended to other animal models, using chicken embryos. We generated three mouse lines targeted at the Tigre (Igs7) locus with TRE-loxP-tdTomato-loxP upstream of three genes (p21, DTA and Ctgf) and combined them with Cre and tTA/rtTA lines that target expression to the cerebellum and limbs. Our tools will facilitate unraveling biological questions in multiple fields and organisms.Summary statementAhmadzadeh et al. present a collection of four mouse lines and genetic tools for misexpression-mediated manipulation of cellular activity with high spatiotemporal control, in a reversible manner.


2020 ◽  
Author(s):  
SK Reilly ◽  
SJ Gosai ◽  
A Gutierrez ◽  
JC Ulirsch ◽  
M Kanai ◽  
...  

AbstractCRISPR screens for cis-regulatory elements (CREs) have shown unprecedented power to endogenously characterize the non-coding genome. To characterize CREs we developed HCR-FlowFISH (Hybridization Chain Reaction Fluorescent In-Situ Hybridization coupled with Flow Cytometry), which directly quantifies native transcripts within their endogenous loci following CRISPR perturbations of regulatory elements, eliminating the need for restrictive phenotypic assays such as growth or transcript-tagging. HCR-FlowFISH accurately quantifies gene expression across a wide range of transcript levels and cell types. We also developed CASA (CRISPR Activity Screen Analysis), a hierarchical Bayesian model to identify and quantify CRE activity. Using >270,000 perturbations, we identified CREs for GATA1, HDAC6, ERP29, LMO2, MEF2C, CD164, NMU, FEN1 and the FADS gene cluster. Our methods detect subtle gene expression changes and identify CREs regulating multiple genes, sometimes at different magnitudes and directions. We demonstrate the power of HCR-FlowFISH to parse genome-wide association signals by nominating causal variants and target genes.


Reproduction ◽  
2011 ◽  
Vol 141 (3) ◽  
pp. 343-355 ◽  
Author(s):  
Michelle L Mujoomdar ◽  
Laura M Hogan ◽  
Albert F Parlow ◽  
Mark W Nachtigal

Bioactivation of precursor proteins by members of the proprotein convertase (PC) family is essential for normal reproduction. ThePcsk6gene is a member of the PC family that is expressed in numerous ovarian cell types including granulosa cells and oocytes. We hypothesized that loss of PCSK6 would produce adverse effects in the mouse ovary. Mice incapable of expressing PCSK6 (Pcsk6tm1Rob) were obtained, and reproductive parameters (serum hormones, whelping interval, estrus cyclicity, and fertility) were compared toPcsk6+/+mice. WhilePcsk6tm1Robfemale mice are fertile, they manifest reduced reproductive capacity at an accelerated rate relative toPcsk6+/+mice. Reproductive senescence is typically reached by 9 months of age and is correlated with loss of estrus cyclicity, elevated serum FSH levels, and gross alterations in ovarian morphology. A wide range of ovarian morphologies were identified encompassing mild, such as an apparent reduction in follicle number, to moderate – ovarian atrophy with a complete absence of follicles – to severe, manifesting as normal ovarian structures replaced by benign ovarian tumors, including tubulostromal adenomas. Targeted gene expression profiling highlighted changes in RNA expression of molecules involved in processes such as steroidogenesis, gonadotropin signaling, transcriptional regulation, autocrine/paracrine signaling, cholesterol handling, and proprotein bioactivation. These results show that PCSK6 activity plays a role in maintaining normal cellular and tissue homeostasis in the ovary.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Sofia Duarte ◽  
Álvaro Viedma-Poyatos ◽  
Elena Navarro-Carrasco ◽  
Alma E. Martínez ◽  
María A. Pajares ◽  
...  

Abstract The vimentin network displays remarkable plasticity to support basic cellular functions and reorganizes during cell division. Here, we show that in several cell types vimentin filaments redistribute to the cell cortex during mitosis, forming a robust framework interwoven with cortical actin and affecting its organization. Importantly, the intrinsically disordered tail domain of vimentin is essential for this redistribution, which allows normal mitotic progression. A tailless vimentin mutant forms curly bundles, which remain entangled with dividing chromosomes leading to mitotic catastrophes or asymmetric partitions. Serial deletions of vimentin tail domain gradually impair cortical association and mitosis progression. Disruption of f-actin, but not of microtubules, causes vimentin bundling near the chromosomes. Pathophysiological stimuli, including HIV-protease and lipoxidation, induce similar alterations. Interestingly, full filament formation is dispensable for cortical association, which also occurs in vimentin particles. These results unveil implications of vimentin dynamics in cell division through its interplay with the actin cortex.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ana J. Chucair-Elliott ◽  
Sarah R. Ocañas ◽  
David R. Stanford ◽  
Victor A. Ansere ◽  
Kyla B. Buettner ◽  
...  

AbstractEpigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific central nervous system cell types. Analysis of gene expression and DNA modifications in astrocytes or microglia from the same animal demonstrates differential usage of DNA methylation and hydroxymethylation in CpG and non-CpG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any brain cell type for which a cell type-specific cre is available.


1985 ◽  
Vol 101 (4) ◽  
pp. 1442-1454 ◽  
Author(s):  
P Cowin ◽  
H P Kapprell ◽  
W W Franke

Desmosomal plaque proteins have been identified in immunoblotting and immunolocalization experiments on a wide range of cell types from several species, using a panel of monoclonal murine antibodies to desmoplakins I and II and a guinea pig antiserum to desmosomal band 5 protein. Specifically, we have taken advantage of the fact that certain antibodies react with both desmoplakins I and II, whereas others react only with desmoplakin I, indicating that desmoplakin I contains unique regions not present on the closely related desmoplakin II. While some of these antibodies recognize epitopes conserved between chick and man, others display a narrow species specificity. The results show that proteins whose size, charge, and biochemical behavior are very similar to those of desmoplakin I and band 5 protein of cow snout epidermis are present in all desmosomes examined. These include examples of simple and pseudostratified epithelia and myocardial tissue, in addition to those of stratified epithelia. In contrast, in immunoblotting experiments, we have detected desmoplakin II only among cells of stratified and pseudostratified epithelial tissues. This suggests that the desmosomal plaque structure varies in its complement of polypeptides in a cell-type specific manner. We conclude that the obligatory desmosomal plaque proteins, desmoplakin I and band 5 protein, are expressed in a coordinate fashion but independently from other differentiation programs of expression such as those specific for either epithelial or cardiac cells.


2017 ◽  
Vol 115 (2) ◽  
pp. E302-E309 ◽  
Author(s):  
Noriko Itoh ◽  
Yuichiro Itoh ◽  
Alessia Tassoni ◽  
Emily Ren ◽  
Max Kaito ◽  
...  

Changes in gene expression that occur across the central nervous system (CNS) during neurological diseases do not address the heterogeneity of cell types from one CNS region to another and are complicated by alterations in cellular composition during disease. Multiple sclerosis (MS) is multifocal by definition. Here, a cell-specific and region-specific transcriptomics approach was used to determine gene expression changes in astrocytes in the most widely used MS model, experimental autoimmune encephalomyelitis (EAE). Astrocyte-specific RNAs from various neuroanatomic regions were attained using RiboTag technology. Sequencing and bioinformatics analyses showed that EAE-induced gene expression changes differed between neuroanatomic regions when comparing astrocytes from spinal cord, cerebellum, cerebral cortex, and hippocampus. The top gene pathways that were changed in astrocytes from spinal cord during chronic EAE involved decreases in expression of cholesterol synthesis genes while immune pathway gene expression in astrocytes was increased. Optic nerve from EAE and optic chiasm from MS also showed decreased cholesterol synthesis gene expression. The potential role of cholesterol synthesized by astrocytes during EAE and MS is discussed. Together, this provides proof-of-concept that a cell-specific and region-specific gene expression approach can provide potential treatment targets in distinct neuroanatomic regions during multifocal neurological diseases.


2020 ◽  
Author(s):  
Jorge Ibañez-Vega ◽  
Felipe Del Valle ◽  
Juan José Saez ◽  
Jheimmy Diaz ◽  
Andrea Soza ◽  
...  

AbstractThe formation of an immune synapse (IS) enables B cells to capture membrane-tethered antigens, where cortical actin cytoskeleton remodeling regulates cell spreading and depletion of F-actin at the centrosome promotes the recruitment of lysosomes to facilitate antigen extraction. How B cells regulate both pools of actin, remains poorly understood. We report here that decreased F-actin at the centrosome and IS relies on the distribution of the proteasome, regulated by Ecm29. Silencing Ecm29 decreases the proteasome pool associated to the centrosome of B cells and shifts its accumulation to the cell cortex and IS. Accordingly, Ecm29-silenced B cells display increased F-actin at the centrosome, impaired centrosome and lysosome repositioning to the IS and defective antigen extraction and presentation. Ecm29-silenced B cells, which accumulate higher levels of proteasome at the cell cortex, display decreased actin retrograde flow in lamellipodia and enhanced spreading responses. Our findings support a model where B the asymmetric distribution of the proteasome, mediated by Ecm29, coordinates actin dynamics at the centrosome and the IS, promoting lysosome recruitment and cell spreading.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4283-4283
Author(s):  
Chieh Lee Wong ◽  
Andrew Innes ◽  
Baoshan Ma ◽  
Gareth Gerrard ◽  
Zainul Abidin Norziha ◽  
...  

Abstract Introduction Despite significant progress in the understanding of the molecular pathogenesis of myeloproliferative neoplasms (MPN) and the identification of high molecular risk (HMR) genes (i.e. ASXL1, EZH2, IDH1 and IDH2 genes), the mechanisms by which different cell types predominate in the different disease subtypes and their implications for prognosis remain uncertain. Given the recently described association of senescence and fibrosis in a number of pathologies by Menoz-Espin et al, we hypothesized that genes implicated in oncogene-induced senescence (OIS) and senescence associated secretory phenotype (SASP) may contribute to the pathogenesis of these neoplastic bone marrow disorders that frequently show evidence of fibrosis. Specifically, we were interested in the gene expression levels in different disease subtypes, at a cell-type level, and whether these patterns of differential expression were distinct from the transforming JAK-STAT pathway and the HMR genes. Aim To elucidate the role of OIS and SASP genes in the pathogenesis of MPN subtypes by determining the differential expression of the genes in specific cell types in patients with MPN. Methods We performed gene expression profiling on normal controls (NC) and patients with MPN who were diagnosed with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) according to the 2008 WHO diagnostic criteria. Two cohorts of patients, the patient and validation cohorts, from 3 tertiary-level hospitals were recruited prospectively over 3 years. Peripheral blood samples were taken and sorted into polymorphonuclear cells (PMN), mononuclear cells (MNC) and T cells. RNA was extracted from each cell population. Gene expression profiling of the human transcriptome was performed using microarray and RNA sequencing on the patient and validation cohorts respectively. Gene expression analyses (GEA) were performed on 4 sets of genes derived from publicly available or custom derived gene set enrichment analysis: 92 OIS genes, 88 SASP genes (Gil et al), 4 HMR genes, and 126 genes associated with JAK-STAT pathway. Gene expression levels for each cell type in each disease were compared with NC to obtain the differential expression of the genes. RNA-seq analysis of samples from the validation cohort was used to validate the microarray results from the patient cohort. Results Twenty-eight patients (10 ET, 11 PV and 7 PMF) and 11 NC were recruited into the patient cohort. Twelve patients (4 ET, 4 PV and 4 PMF) and 4 NC were recruited into the validation cohort. After combination of the microarray and RNA-seq datasets, GEA of the OIS genes revealed the differential expressions of MCTP1 and SULT1B1 genes by PMN in PV but of none in PMF. In contrast, the BEX1 gene was identified as differentially expressed by MNC in PMF but none in PV. GEA of the SASP genes revealed differential expression of THBS1 gene by MNC in PMF but of none in PV. None of the SASP genes were differentially expressed by PMN in either PV or PMF. No differentially expressed genes were identified by PMN or MNC in ET, or by T cells in any of the diseases. Notably, GEA of the HMR genes and genes associated with the JAK-STAT pathways did not show any differential expression in any disease subtype by any cell type. Conclusions We have found strikingly distinct patterns of differential expression of senescence associated genes by PMN (in PV) and MNC (in PMF). These results provide a novel insight into the mechanisms underlying the different phenotype of the MPN subtypes and also to the cells responsible for mediating the differences. The lack of differential expression of OIS and SASP genes in ET may reflect the milder clinical phenotype of the disease. Although mutations in the HMR genes are associated with poor prognosis in PMF, the lack of differential expression in these genes and genes associated with the JAK-STAT pathway is in keeping with their mutated status and suggests that they give rise to the disease phenotypes via altering downstream expression of genes associated in other pathways such as the senescence pathways studied here. Further studies are warranted to investigate the role of these genes and the pathways involved in senescence at a cell-type specific level in order to gain further insight into how they can potentially give rise to the various disease phenotypes in MPN and unmask potential therapeutic targets. Disclosures Aitman: Illumina: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document