scholarly journals Effect of Stapling on the Thermodynamics of Protein-Peptide Binding

2020 ◽  
Author(s):  
Atanu Maity ◽  
Asha Rani Choudhury ◽  
Rajarshi Chakrabarti

AbstractProtein-protein interaction (PPI) is one of the key regulatory features to drive biomolecular processes and hence is targeted for designing therapeutics against diseases. Small peptides are a new and emerging class of therapeutics owing to their high specificity and low toxicity. For achieving efficient targeting of the PPI, amino acid side chains are often stapled together resulting in the rigidification of these peptides. Exploring the scope of these peptides demands a comprehensive understanding of their working principle. In this work, two stapled p53 peptides have been considered to delineate their binding mechanism with mdm2 using computational approaches. Addition of stapling protects the secondary structure of the peptides even in the case of thermal and chemical denaturation. Although the introduction of a stapling agent increases the hydrophobicity of the peptide surprisingly the enthalpic stabilization decreases. This is overcome by the lowering of the entropic penalty and the overall binding affinity improves. The mechanistic insights into the benefit of peptide stapling can be adopted for further improvement of peptide therapeutics.

Author(s):  
Samad Beheshtirouy ◽  
Farhad Mirzaei ◽  
Shirin Eyvazi ◽  
Vahideh Tarhriz

: Breast cancer is a heterogeneous malignancy which is the second cause of mortality among women in the world. Increasing the resistance to anti-cancer drugs in breast cancer cells persuades researchers to search the novel therapies approaches for the treatment of the malignancy. Among the novel methods, therapeutic peptides which target and disrupt tumor cells have been of great interest. Therapeutic peptides are short amino acids monomer chains with high specificity to bind and modulate a protein interaction of interest. Several advantages of peptides such as specific binding on tumor cells surface, low molecular weight and low toxicity on normal cells make the peptides as an appealing therapeutic agents against solid tumors, particularly breast cancer. Also, National Institutes of Health (NIH) describes therapeutic peptides as suitable candidate for the treatment of drug-resistant breast cancer. In this review, we attempt to review the different therapeutic peptides against breast cancer cells which can be used in treatment and diagnosis of the malignancy. Meanwhile, we presented an overview of peptide vaccines which have been developed for the treatment of breast cancer.


The Analyst ◽  
2021 ◽  
Author(s):  
Chang Shu ◽  
Tengfei Li ◽  
Duo Li ◽  
Zhong-Qiu Li ◽  
Xing-Hua Xia

Protein drugs showing strong pharmaceutical activity, high specificity, low toxicity and side effects, have drawn extensive attention from the field of life science and medicine. Precise evaluation of the function...


Pharmaceutics ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 166 ◽  
Author(s):  
Lucia Lombardi ◽  
Annarita Falanga ◽  
Valentina Del Genio ◽  
Stefania Galdiero

Peptide drugs hold great promise for the treatment of infectious diseases thanks to their novel mechanisms of action, low toxicity, high specificity, and ease of synthesis and modification. Naturally developing self-assembly in nature has inspired remarkable interest in self-assembly of peptides to functional nanomaterials. As a matter of fact, their structural, mechanical, and functional advantages, plus their high bio-compatibility and bio-degradability make them excellent candidates for facilitating biomedical applications. This review focuses on the self-assembly of peptides for the fabrication of antibacterial nanomaterials holding great interest for substituting antibiotics, with emphasis on strategies to achieve nano-architectures of self-assembly. The antibacterial activities achieved by these nanomaterials are also described.


1997 ◽  
Vol 17 (6) ◽  
pp. 537-542 ◽  
Author(s):  
G. Csaba ◽  
P. Kovács

Proline-glycine, proline-leucine and proline-valine dipeptides and their retro variants were used in the experiments to study the effects of pretreatment (imprinting) in Tetrahymena, by investigating fluorescein isothiocyanate (FITC)-conjugated peptide binding. The protozoan organism could differentiate between the proline-dipeptides containing different partner amino-acids and between the dipeptides having the amino acids in reversed positions. The effect of imprinting was positive or negative and this was dependent on the type of the partner amino acid and on its position. Pro-Gly and Pro-Leu induced positive imprinting (elevated FITC-dipeptide binding) and Pro-Val induced negative imprinting (decrease of FITC-peptide binding). There was positive imprinting induction in two cases for the retro FITC-peptide and in one case for the FITC-conjugate of the imprinter peptide itself. The highest positive imprinting (almost 60% increase) was induced by Pro-Gly for FITC-Gly-Pro. Considering earlier—chemotaxis—experiments, the results of the present—binding—studies run parallel with the physiological effects. The experiments call attention to the sharp differentiating ability of small peptides at a unicellular level, that could have some role in the selection of molecules for hormone formation, during evolution.


Author(s):  
Azlann Arnett ◽  
Keagan G Moo ◽  
Kaitlin J Flynn ◽  
Thomas B Sundberg ◽  
Liv Johannessen ◽  
...  

Immune health requires innate and adaptive immune cells to engage precisely balanced pro- and anti-inflammatory forces. We employ the concept of chemical immunophenotypes to classify small molecules functionally or mechanistically according to their patterns of effects on primary innate and adaptive immune cells. The high-specificity, low-toxicity cyclin dependent kinase 8 (CDK8) inhibitor DCA exerts a distinct tolerogenic profile in both innate and adaptive immune cells. DCA promotes T reg and Th2 differentiation, while inhibiting Th1 and Th17 differentiation, in both murine and human cells. This unique chemical immunophenotype led to mechanistic studies showing that DCA promotes T reg differentiation in part by regulating a previously undescribed CDK8-GATA3-FOXP3 pathway that regulates early pathways of Foxp3 expression. These results highlight previously unappreciated links between T reg and Th2 differentiation and extend our understanding of the transcription factors that regulate T reg differentiation and their temporal sequencing. These findings have significant implications for future mechanistic and translational studies of CDK8 and CDK8 inhibitors.


2019 ◽  
Vol 27 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Jaspreet Kaur Boparai ◽  
Pushpender Kumar Sharma

Antimicrobial peptides in recent years have gained increased interest among scientists, health professionals and the pharmaceutical companies owing to their therapeutic potential. These are low molecular weight proteins with broad range antimicrobial and immuno modulatory activities against infectious bacteria (Gram positive and Gram negative), viruses and fungi. Inability of micro-organisms to develop resistance against most of the antimicrobial peptide has made them as an efficient product which can greatly impact the new era of antimicrobials. In addition to this these peptides also demonstrates increased efficacy, high specificity, decreased drug interaction, low toxicity, biological diversity and direct attacking properties. Pharmaceutical industries are therefore conducting appropriate clinical trials to develop these peptides as potential therapeutic drugs. More than 60 peptide drugs have already reached the market and several hundreds of novel therapeutic peptides are in preclinical and clinical development. Rational designing can be used further to modify the chemical and physical properties of existing peptides. This mini review will discuss the sources, mechanism and recent therapeutic applications of antimicrobial peptides in treatment of infectious diseases.


2021 ◽  
Author(s):  
Liting Xie ◽  
Jieqiong Wang ◽  
Shuai Zhao ◽  
Manlin Lai ◽  
Tian'an Jiang ◽  
...  

Ultrasound-activated microbubbles destruction is a promising platform for gene delivery due to the low toxicity, non-invasiveness, and high specificity. However, the gene transfection efficiency is still low, especially for suspension...


Sign in / Sign up

Export Citation Format

Share Document