scholarly journals DNA methylation aging and transcriptomic studies in horses

Author(s):  
Steve Horvath ◽  
Amin Haghani ◽  
Sichong Peng ◽  
Erin N. Hales ◽  
Joseph A. Zoller ◽  
...  

ABSTRACTHuman DNA methylation profiles have been used successfully to develop highly accurate biomarkers of aging (“epigenetic clocks”). Here, we describe epigenetic clocks for horses, based on methylation profiles of CpGs with flanking DNA sequences that are highly conserved between multiple mammalian species. Methylation levels of these CpGs were measured using a custom-designed Infinium array (HorvathMammalMethylChip40). We generated 336 DNA methylation profiles from 42 different horse tissues and body parts, which we used to develop five epigenetic clocks for horses: a multi-tissue clock, a blood clock, a liver clock and two dual-species clocks that apply to both horses and humans. Epigenetic age measured by these clocks show that while castration affects the basal methylation levels of individual cytosines, it does not exert a significant impact on the epigenetic aging rate of the horse. We observed that most age-related CpGs are adjacent to developmental genes. Consistently, these CpGs reside in bivalent chromatin domains and polycomb repressive targets, which are elements that control expression of developmental genes. The availability of an RNA expression atlas of these tissues allowed us to correlate CpG methylation, their corresponding contextual chromatin features and gene expression. This analysis revealed that while increased methylation of CpGs in enhancers is likely to repress gene expression, methylation of CpGs in bivalent chromatin domains on the other hand is likely to stimulate expression of the corresponding downstream loci, which are often developmental genes. This supports the notion that aging may be accompanied by increased expression of developmental genes. It is expected that the epigenetic clocks will be useful for identifying and validating anti-aging interventions for horses.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Katherine R. Dobbs ◽  
Paula Embury ◽  
Emmily Koech ◽  
Sidney Ogolla ◽  
Stephen Munga ◽  
...  

Abstract Background Age-related changes in adaptive and innate immune cells have been associated with a decline in effective immunity and chronic, low-grade inflammation. Epigenetic, transcriptional, and functional changes in monocytes occur with aging, though most studies to date have focused on differences between young adults and the elderly in populations with European ancestry; few data exist regarding changes that occur in circulating monocytes during the first few decades of life or in African populations. We analyzed DNA methylation profiles, cytokine production, and inflammatory gene expression profiles in monocytes from young adults and children from western Kenya. Results We identified several hypo- and hyper-methylated CpG sites in monocytes from Kenyan young adults vs. children that replicated findings in the current literature of differential DNA methylation in monocytes from elderly persons vs. young adults across diverse populations. Differentially methylated CpG sites were also noted in gene regions important to inflammation and innate immune responses. Monocytes from Kenyan young adults vs. children displayed increased production of IL-8, IL-10, and IL-12p70 in response to TLR4 and TLR2/1 stimulation as well as distinct inflammatory gene expression profiles. Conclusions These findings complement previous reports of age-related methylation changes in isolated monocytes and provide novel insights into the role of age-associated changes in innate immune functions.


Genomics ◽  
2020 ◽  
Vol 112 (6) ◽  
pp. 5147-5156
Author(s):  
Min Zhou ◽  
Liang Zhang ◽  
Qiao Yang ◽  
Chaochao Yan ◽  
Peng Jiang ◽  
...  

2019 ◽  
Vol 41 (15) ◽  
pp. 1514-1519 ◽  
Author(s):  
Lukas Streese ◽  
Abdul Waheed Khan ◽  
Arne Deiseroth ◽  
Shafaat Hussain ◽  
Rosa Suades ◽  
...  

Abstract Aims Impairments of retinal vessel diameter are associated with major adverse cardiovascular (CV) events. Promoter DNA methylation is a repressor of the mitochondrial adaptor p66Shc gene transcription, a key driver of ageing-induced reactive oxygen species. The study aimed to investigate whether high-intensity interval training (HIIT) affects retinal microvascular phenotype as well as p66Shc expression and oxidative stress in ageing subjects with increased CV risk from the EXAMIN AGE cohort. Methods and results Eighty-four sedentary subjects (mean age 59.4 ± 7.0 years) with ≥2 CV risk factors were randomized into either a 12-week HIIT or standard physical activity recommendations. Retinal arteriolar and venular diameters were measured by use of a retinal vessel analyser. As a marker of oxidative stress plasma 3-nitrotyrosine (3-NT) level was determined by ELISA. Gene expression of p66Shc and DNA methylation were assessed in mononuclear cells by RT-qPCR and methylated-DNA capture (MethylMiner Enrichment Kit) coupled with qPCR, respectively. High-intensity interval training reduced body mass index, fat mass, low-density lipoprotein and increased muscle mass, as well as maximal oxygen uptake (VO2max). Moreover, HIIT restored microvascular phenotype by inducing retinal arteriolar widening (pre: 175 ± 14 µm vs. post: 181 ± 13 µm, P = 0.001) and venular narrowing (pre: 222 ± 14 µm vs. post: 220 ± 14 µm, P = 0.007). After HIIT, restoration of p66Shc promoter methylation (P = 0.034) reduced p66Shc gene expression (P = 0.037) and, in turn, blunted 3-NT plasma levels (P = 0.002). Conclusion High-intensity interval training rescues microvascular dysfunction in ageing subjects at increased CV risk. Exercise-induced reprogramming of DNA methylation of p66Shc gene may represent a putative mechanistic link whereby exercise protects against age-related oxidative stress. Clinical trial registration  ClinicalTrials.gov: NCT02796976 (https://clinicaltrials.gov/ct2/show/NCT02796976).


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S746-S746
Author(s):  
Morgan E Levine

Abstract One of the major goals of the NIA is to oversee development of biomarkers of aging. In recent years, DNA methylation has emerged as a promising avenue from which to quantify biological age. We and others have shown that these measures track age across various tissues and cells, and further deviations between chronological and “epigenetic age” have been shown to confer risk for various aging outcomes. However, the usefulness of these measures will depend on both their modifiability and ability to capture known targetable hallmarks of aging. Using DNA methylation data from cell line experiments, we have recently generated epigenetic predictors of cellular senescence for both human and mouse that when assessed in vivo from bulk samples, show age-related increases and are associated with aging outcomes. In moving forward, measures such as these may serve as promising surrogate endpoints for assessing efficacy of senolytic drugs and/or other anti-aging therapeutics.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2367-2367
Author(s):  
Mira Jeong ◽  
Deqiang Sun ◽  
Min Luo ◽  
Aysegul Ergen ◽  
Hongcang Gu ◽  
...  

Abstract Abstract 2367 Hematopoietic stem cell (HSC) Aging is a complex process linked to number of changes in gene expression and functional decline of self-renewal and differentiation potential. While epigenetic changes have been implicated in HSC aging, little direct evidence has been generated. DNA methylation is one of the major underlying mechanisms associated with the regulation of gene expression, but changes in DNA methylation patterns with HSC aging have not been characterized. We hypothesize that revealing the genome-wide DNA methylation and transcriptome signatures will lead to a greater understanding of HSC aging. Here, we report the first genome-scale study of epigenomic dynamics during normal mouse HSC aging. We isolated SP-KSL-CD150+ HSC populations from 4, 12, 24 month-old mouse bone marrow and carried out genome-wide reduced representative bisulfite sequencing (RRBS) and identified aging-associated differentially methylated CpGs. Three biological samples were sequenced from each aging group and we obtained 30–40 million high-quality reads with over 30X total coverage on ∼1.1M CpG sites which gives us adequate statistical power to infer methylation ratios. Bisulfite conversion rate of non-CpG cytosines was >99%. We analyzed a variety of genomic features to find that CpG island promoters, gene bodies, 5'UTRs, and 3'UTRs generally were associated with hypermethylation in aging HSCs. Overall, out of 1,777 differentially methylated CpGs, 92.8% showed age-related hypermethylation and 7.2% showed age-related hypomethylation. Gene ontology analyses have revealed that differentially methylated CpGs were significantly enriched near genes associated with alternative splicing, DNA binding, RNA-binding, transcription regulation, Wnt signaling and pathways in cancer. Most interestingly, over 579 splice variants were detected as candidates for age-related hypermethylation (86%) and hypomethylation (14%) including Dnmt3a, Runx1, Pbx1 and Cdkn2a. To quantify differentially expressed RNA-transcripts across the entire transcriptome, we performed RNA-seq and analyzed exon arrays. The Spearman's correlation between two different methods was good (r=0.80). From exon arrays, we identified 586 genes that were down regulated and 363 gene were up regulated with aging (p<0.001). Most interestingly, overall expression of DNA methyl transferases Dnmt1, Dnmt3a, Dnmt3b were down regulated with aging. We also found that Dnmt3a2, the short isoform of Dnmt3a, which lacks the N-terminal region of Dnmt3a and represents the major isoform in ES cells, is more expressed in young HSC. For the RNA-seq analysis, we focused first on annotated transcripts derived from cloned mRNAs and we found 307 genes were down regulated and 1015 gene were up regulated with aging (p<0.05). Secondly, we sought to identify differentially expressed isoforms and also novel transcribed regions (antisense and novel genes). To characterize the genes showing differential regulation, we analyzed their functional associations and observed that the highest scoring annotation cluster was enriched in genes associated with translation, the immune network and hematopoietic cell lineage. We expect that the results of these experiments will reveal the global effect of DNA methylation on transcript stability and the translational state of target genes. Our findings will lend insight into the molecular mechanisms responsible for the pathologic changes associated with aging in HSCs. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Katherine Rose Dobbs ◽  
Paula Embury ◽  
Emmily Koech ◽  
Sidney Ogolla ◽  
Stephen Munga ◽  
...  

Abstract Background: Age-related changes in adaptive and innate immune cells have been associated with a decline in effective immunity and chronic, low-grade inflammation. Epigenetic, transcriptional, and functional changes in monocytes occur with aging, though most studies to date have focused on differences between young adults and the elderly in populations with European ancestry; few data exist regarding changes that occur in circulating monocytes during the first few decades of life or in African populations. We analyzed DNA methylation profiles, cytokine production, and inflammatory gene expression profi 24 les in monocytes from young adults and children from western Kenya.Results: We identified several hypo- and hyper-methylated CpG sites in monocytes from Kenyan young adults vs. children that replicated findings in the current literature of differential DNA methylation in monocytes from elderly persons vs. young adults across diverse populations. Differentially methylated CpG sites were also noted in gene regions important to inflammation and innate immune responses. Monocytes from Kenyan young adults vs. children displayed increased production of IL-8, IL-10, and IL-12p70 in response to TLR4 and TLR2/1 stimulation as well as distinct inflammatory gene expression profiles.Conclusions: These findings complement previous reports of age-related methylation changes in isolated monocytes and provide novel insights into the role of age-associated changes in innate immune functions.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3889-3889
Author(s):  
Anca Franzini ◽  
Jamshid S Khorashad ◽  
Hein Than ◽  
Anthony D. Pomicter ◽  
Dongqing Yan ◽  
...  

Abstract Chronic myelomonocytic leukemia (CMML) is a genetically heterogeneous hematopoietic stem cell disorder that combines features of a myelodysplastic syndrome and a myeloproliferative neoplasm and exhibits a strong bias towards older age. The prognosis of CMML is poor, with overall survival of less than 3 years in most studies, however recurrent somatic mutations explain only 15-24% of the clinical heterogeneity of CMML (Elena C. et al. Blood 128:1408-17, 2016). The extreme skewing of the CMML age distribution suggests that CMML reflects the malignant conversion of the myelomonocytic-biased differentiation characteristic of an aged hematopoietic system. We hypothesized that separating the contribution of the normal aging process from bona fide CMML-specific alterations will improve the molecular characterization and biological understanding of CMML. We decided to focus on monocytes as the phenotypic minimal common denominator of genetically heterogeneous diseases. CD14+ monocytes were sorted from the blood of untreated CMML patients (N=12, median age 77 years, range 61-90), age-matched healthy controls (old controls: N=12, median age 68 years, range 62-74) and young healthy controls (young controls: N=16, median age 29 years, range 24-44) and subjected to RNA sequencing and DNA methylation profiling. Differentially expressed genes in CMML monocytes compared to healthy controls were identified with DESeq2 using a 1% false discovery rate (FDR) and a fold-change cutoff set at >│2│ (Figure 1A). We identified the 2480 CMML-specific genes by subtracting all genes with significant differences in the young controls vs. old controls comparison from the CMML vs. old controls comparison. The top-25 most significantly upregulated genes (Figure 1B) included transcription factors, TNFα signaling genes, genes that regulate genomic stability, and genes involved in apoptosis. The most significantly downregulated transcripts were genes involved in response to DNA damage, RNA binding, monocyte differentiation and mediators of inflammatory process. To link these observations to function, we imputed the 2480 CMML-specific differentially expressed genes into the ingenuity pathway analysis (IPA) application. This analysis uncovered significant enrichment of pathways involved in: mitotic roles of Polo-like kinase, G2/M DNA damage checkpoint regulation, lymphotoxin β receptor signaling, IL-6 signaling and ATM signaling (Figure 1C). DNA methylation profiling revealed 909 differentially methylated regions (DMRs) between CMML and age-matched controls, with most regions being hypermethylated in CMML monocytes. Of these, 37% of the DMRs were intronic, 22% were exonic, 14 % were in the promoter region (Figure 1D), 10% were downstream, 10% were upstream, the remainder were 3' and 5'-overlaps. We also performed integrated analysis using the promoter DMRs and the gene expression profile to identify CMML-associated genes that are likely to be regulated by specific changes in methylation. We observed concomitant changes in CMML-specific mRNA transcripts and DNA methylation promoter regions in the CMML vs. old controls contrast for 10 genes (Figure 1E). AOAH, SERINC5, TAF3 and AHCYL1 were downregulated and hypermethylated; MS4A3, TNF, VCAM1, and IFT80, were upregulated and hypermethylated; TUBA1B was upregulated and hypomethylated and PITPNA was downregulated and hypomethylated. Our study is the first to combine transcriptional and methylation profiling for molecular characterization of CMML monocytes. Conclusions: (i) age-related gene expression changes contribute significantly to the CMML transcriptome; (ii) the CMML-specific transcriptome is characterized by differential regulation of transcription factors, inflammatory response genes and anti-apoptotic pathway genes; (iii) differences in promoter methylation represent only a small proportion of overall differences in methylation, suggesting that intragenic or intronic methylation is a major contributor to the leukemic phenotype; (iv) age-related changes may be necessary, but are not sufficient to realize the CMML phenotype. Figure 1. Figure 1. Disclosures Deininger: Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Blueprint: Consultancy.


2018 ◽  
Author(s):  
Stephen A. Semick ◽  
Rahul A. Bharadwaj ◽  
Leonardo Collado-Torres ◽  
Ran Tao ◽  
Joo Heon Shin ◽  
...  

AbstractBackgroundLate-onset Alzheimer’s disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic factors. To better understand the epigenetic state associated with AD represented as variation in DNA methylation (DNAm), we surveyed 420,852 DNAm sites from neurotypical controls (N=49) and late-onset AD patients (N=24) across four brain regions (hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum).ResultsWe identified 858 sites with robust differential methylation, collectively annotated to 772 possible genes (FDR<5%, within 10kb). These sites were overrepresented in AD genetic risk loci (p=0.00655), and nearby genes were enriched for processes related to cell-adhesion, immunity, and calcium homeostasis (FDR<5%). We analyzed corresponding RNA-seq data to prioritize 130 genes within 10kb of the differentially methylated sites, which were differentially expressed and had expression levels associated with nearby DNAm levels (p<0.05). This validated gene set includes previously reported (e.g. ANK1, DUSP22) and novel genes involved in Alzheimer’s disease, such as ANKRD30B.ConclusionsThese results highlight DNAm changes in Alzheimer’s disease that have gene expression correlates, implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.


2019 ◽  
Author(s):  
Dan Eisenberg ◽  
Peter H Rej ◽  
Paulita Duazo ◽  
Delia Carba ◽  
M. Geoffrey Hayes ◽  
...  

Telomeres are repeating DNA sequences found at the ends of chromosomes, which are typically shortened with each cell replication and are considered biomarkers of aging. Contrary to the shortening of telomeres that occurs with age in most human tissues, spermatocyte telomere length (TL) increases with age. These age-related changes in TL appear to be heritable, as offspring of older fathers tend to have longer TL. Animal model research suggests that smoking, inflammation, DNA damage, and environmental stressors may shorten sperm TL, raising questions about the potential for intergenerational effects of paternal experience on human offspring TL. Using multigenerational data from a longitudinal cohort study in the Philippines, we tested if smoking, psychosocial stressors, or shorter knee height (an anthropometric measure of early life adversity) predict shorter offspring TL. While we did not find the predicted associations, we observed a trend towards fathers with shorter knee height and taller non-knee height having offspring with longer TL. In addition, we found that knee height interacted with paternal age at conception to predict offspring TL – i.e. fathers with shorter knee heights showed a stronger positive effect of paternal age at conception on offspring TL. While the reasons for these associations remain uncertain, shorter relative knee height and taller relative non-knee height are characteristics of earlier puberty. Since sperm TL increases with the division of spermatocytes, we speculate that individuals who begin puberty earlier may have had more time to accumulate longer sperm telomeres with age, which are then passed on to offspring.


2019 ◽  
Vol 25 (39) ◽  
pp. 4139-4149 ◽  
Author(s):  
Francesco Guarasci ◽  
Patrizia D'Aquila ◽  
Alberto Montesanto ◽  
Andrea Corsonello ◽  
Dina Bellizzi ◽  
...  

: Patterns of DNA methylation, the best characterized epigenetic modification, are modulated by aging. In humans, different studies at both site-specific and genome-wide levels have reported that modifications of DNA methylation are associated with the chronological aging process but also with the quality of aging (or biological aging), providing new perspectives for establishing powerful biomarkers of aging. : In this article, the role of DNA methylation in aging and longevity has been reviewed by analysing literature data about DNA methylation variations occurring during the lifetime in response to environmental factors and genetic background, and their association with the aging process and, in particular, with the quality of aging. Special attention has been devoted to the relationship between nuclear DNA methylation patterns, mitochondrial DNA epigenetic modifications, and longevity. Mitochondrial DNA has recently been reported to modulate global DNA methylation levels of the nuclear genome during the lifetime, and, in spite of the previous belief, it has been found to be the target of methylation modifications. : Analysis of DNA methylation profiles across lifetime shows that a remodeling of the methylome occurs with age and/or with age-related decline. Thus, it can be an excellent biomarker of aging and of the individual decline and frailty status. The knowledge about the mechanisms underlying these modifications is crucial since it might allow the opportunity for targeted treatment to modulate the rate of aging and longevity.


Sign in / Sign up

Export Citation Format

Share Document