scholarly journals Hydrogen sulfide improves the cold stress resistance through the CsARF5-CsDREB3 module in cucumber

2021 ◽  
Author(s):  
Xiao-Wei Zhang ◽  
Xin Fu ◽  
Feng-Jiao Liu ◽  
Ya-Nan Wang ◽  
Huan-Gai Bi ◽  
...  

AbstractHydrogen sulfide (H2S) plays a crucial role in regulating cold tolerance. But the synergistic regulation of H2S and auxin in the plant response to cold stress has not been reported. In the study, we found that sodium hydrosulfide (NaHS, an H2S donor) treatment enhanced the cold tolerance of cucumber seedlings and increased the level of auxin. CsARF5, a cucumber auxin response factor (ARF) gene was isolated and its role in regulating H2S-mediated cold stress tolerance was described. Transgenic cucumber leaves overexpressing CsARF5 were obtained. Physiological analysis indicated that overexpression of CsARF5 enhanced the cold stress tolerance of cucumber and the regulation of the cold stress response by CsARF5 depends on H2S. In addition, molecular assays showed that CsARF5 modulated cold stress response by directly activating the expression of the dehydration-responsive element-binding (DREB)/C-repeat binding factor (CBF) gene CsDREB3, which was identified as a positive regulator of cold stress. Taken together, our results suggest that CsARF5 plays an important role in H2S-mediated cold stress in cucumber. These results shed light on the molecular mechanism by which H2S regulates cold stress response by mediating auxin signaling, and will provide insights for further studies on the molecular mechanism by which H2S regulates cold stress.HighlightAuxin signaling participates in H2S-mediated cold stress through the CsARF5-CsDREB3 module in cucumber.

2021 ◽  
Vol 22 (24) ◽  
pp. 13229
Author(s):  
Xiaowei Zhang ◽  
Xin Fu ◽  
Fengjiao Liu ◽  
Yanan Wang ◽  
Huangai Bi ◽  
...  

As an important gas signaling molecule, hydrogen sulfide (H2S) plays a crucial role in regulating cold tolerance. H2S cooperates with phytohormones such as abscisic acid, ethylene, and salicylic acid to regulate the plant stress response. However, the synergistic regulation of H2S and auxin in the plant response to cold stress has not been reported. This study showed that sodium hydrosulfide (NaHS, an H2S donor) treatment enhanced the cold stress tolerance of cucumber seedlings and increased the level of auxin. CsARF5, a cucumber auxin response factor (ARF) gene, was isolated, and its role in regulating H2S-mediated cold stress tolerance was described. Transgenic cucumber leaves overexpressing CsARF5 were obtained. Physiological analysis indicated that overexpression of CsARF5 enhanced the cold stress tolerance of cucumber and the regulation of the cold stress response by CsARF5 depends on H2S. In addition, molecular assays showed that CsARF5 modulated cold stress response by directly activating the expression of the dehydration-responsive element-binding (DREB)/C-repeat binding factor (CBF) gene CsDREB3, which was identified as a positive regulator of cold stress. Taken together, the above results suggest that CsARF5 plays an important role in H2S-mediated cold stress in cucumber. These results shed light on the molecular mechanism by which H2S regulates cold stress response by mediating auxin signaling; this will provide insights for further studies on the molecular mechanism by which H2S regulates cold stress. The aim of this study was to explore the molecular mechanism of H2S regulating cold tolerance of cucumber seedlings and provide a theoretical basis for the further study of cucumber cultivation and environmental adaptability technology in winter.


2021 ◽  
Author(s):  
Zemin Wang ◽  
Darren Chern Jan Wong ◽  
Yi Wang ◽  
Guangzhao Xu ◽  
Chong Ren ◽  
...  

Abstract Cultivated grapevine (Vitis) is a highly valued horticultural crop, and cold stress affects its growth and productivity. Wild Amur grape (Vitis amurensis) PAT1 (Phytochrome A signal transduction 1, VaPAT1) is induced by low temperature, and ectopic expression of VaPAT1 enhances cold tolerance in Arabidopsis (Arabidopsis thaliana). However, little is known about the molecular mechanism of VaPAT1 during the cold stress response in grapevine. Here, we confirmed the overexpression of VaPAT1 in transformed grape calli enhanced cold tolerance. Yeast two-hybrid and bimolecular fluorescence complementation assays highlighted an interaction between VaPAT1 with INDETERMINATE-DOMAIN 3 (VaIDD3). A role of VaIDD3 in cold tolerance was also indicated. Transcriptome analysis revealed VaPAT1 and VaIDD3 overexpression and cold treatment coordinately modulate the expression of stress-related genes including lipoxygenase 3 (LOX3), a gene encoding a key jasmonate biosynthesis enzyme. Co-expression network analysis indicated LOX3 might be a downstream target of VaPAT1. Both electrophoretic mobility shift and dual luciferase reporter assays showed the VaPAT1-IDD3 complex binds to the IDD-box (AGACAAA) in the VaLOX3 promoter to activate its expression. Overexpression of both VaPAT1 and VaIDD3 increased the transcription of VaLOX3 and JA levels in transgenic grape calli. Conversely, VaPAT1-SRDX (dominant repression) and CRISPR/Cas9-mediated mutagenesis of PAT1-ED causing the loss of the C-terminus in grape calli dramatically prohibited the accumulation of VaLOX3 and JA levels during cold treatment. Together, these findings point to a pivotal role of VaPAT1 in the cold stress response in grape by regulating JA biosynthesis.


2020 ◽  
Vol 223 (21) ◽  
pp. jeb219592
Author(s):  
Dina Malkeyeva ◽  
Elena Kiseleva ◽  
Svetlana Fedorova

ABSTRACTHsp67Bc in Drosophila melanogaster is a member of the small heat shock protein family, the main function of which is to prevent the aggregation of misfolded or damaged proteins. Hsp67Bc interacts with Starvin and Hsp23, which are known to be a part of the cold stress response in the fly during the recovery phase. In this study, we investigated the role of the Hsp67Bc gene in the cold stress response. We showed that in adult Drosophila, Hsp67Bc expression increases after cold stress and decreases after 1.5 h of recovery, indicating the involvement of Hsp67Bc in short-term stress recovery. We also implemented a deletion in the D. melanogaster Hsp67Bc gene using imprecise excision of a P-element, and analysed the cold tolerance of Hsp67Bc-null mutants at different developmental stages. We found that Hsp67Bc-null homozygous flies are viable and fertile but display varying cold stress tolerance throughout the stages of ontogenesis: the survival after cold stress is slightly impaired in late third instar larvae, unaffected in pupae, and notably affected in adult females. Moreover, the recovery from chill coma is delayed in Hsp67Bc-null adults of both sexes. In addition, the deletion in the Hsp67Bc gene caused more prominent up-regulation of Hsp70 following cold stress, suggesting the involvement of Hsp70 in compensation of the lack of the Hsp67Bc protein. Taken together, our results suggest that Hsp67Bc is involved in the recovery of flies from a comatose state and contributes to the protection of the fruit fly from cold stress.


2021 ◽  
Vol 22 (5) ◽  
pp. 2487
Author(s):  
Juyoung Choi ◽  
Wonkyung Lee ◽  
Gynheung An ◽  
Seong-Ryong Kim

Ubiquitination is an important environmental stress response, and E3 ubiquitin ligases play a major role in the process. T-DNA insertion mutants of rice, Oscbe1-1, and Oscbe1-2, were identified through the screening of cold stress tolerance at seedling stage. Oscbe1 mutants showed a significantly higher cold stress tolerance in the fresh weight, chlorophyll content, and photosynthetic efficiency than wild type. Molecular prediction showed that OsCBE1 (Oryza sativa Cullin4-Based E3 ubiquitin ligase1) encoded a novel substrate receptor of Cullin4-based E3 ubiquitin ligase complex (C4E3). Whereas Oscbe1 mutants had fewer panicles and grains than wild type in the paddy field, the overexpression lines of OsCBE1 had more panicles and grains, suggesting that OsCBE1 is involved in the regulation of both abiotic stress response and development. Oscbe1 mutants also showed ABA hypersensitivity during seed germination, suggesting OsCBE1 function for the stress response via ABA signaling. In silico analysis of OsCBE1 activity predicted a CCCH-type transcription factor, OsC3H32, as a putative substrate. Co-IP (Co-immunoprecipitation) study showed that OsCBE1 interacts with OsDDB1, an expected binding component of OsCBE1 and OsC3H32. Additionally, expression of OsOLE16, OsOLE18, and OsBURP5 were negatively related with expression of OsCBE1. These results suggest that OsCBE1 functions as a regulator of the abiotic stress response via CCCH as a member of the C4E3.


Author(s):  
Jie Song ◽  
Hao Wu ◽  
Feng He ◽  
Jing Qu ◽  
Yue Wang ◽  
...  

Abstract C-repeat (CRT) binding factors (CBFs) are well known to act as crucial transcription factors that function in cold stress response. Arginine decarboxylase (ADC)-mediated putrescine biosynthesis has been reported to be activated in plants exposed to cold conditions, but it remains elusive whether CBFs can regulate ADC expression and putrescine accumulation. In this study, we show that cold up-regulated ADC gene (CsADC) and elevation of endogenous putrescine content in sweet orange (Citrus sinensis). Promoter of CsADC contains two CRT sequences that are canonical elements recognized by CBFs. Sweet orange genome contains four CBFs (CsCBF1-4), in which CsCBF1 was significantly induced by cold. CsCBF1, located in the nucleus, was demonstrated to bind directly and specifically to the promoter of CsADC and acted as a transcriptional activator. Overexpression of CsCBF1 led to notable elevation of CsADC and putrescine level in sweet orange transgenic plants, along with remarkably enhanced cold tolerance, relative to the wild type (WT). However, pretreatment with D-arginine, an ADC inhibitor, caused prominent reduction of endogenous putrescine level in the overexpressing lines, accompanied by greatly compromised cold tolerance. Taken together, these results demonstrate that CBF1 of sweet orange directly regulates ADC expression and modulates putrescine synthesis for orchestrating the cold tolerance. Our findings shed light into the transcriptional regulation of putrescine accumulation through targeting the ADC gene in the presence of cold stress. Meanwhile, this study illustrates a new mechanism underlying the CBF-mediated cold stress response.


2019 ◽  
Vol 20 (2) ◽  
pp. 355 ◽  
Author(s):  
Xiaoyu Wang ◽  
Min Li ◽  
Xuming Liu ◽  
Lixue Zhang ◽  
Qiong Duan ◽  
...  

Early planting is one of the strategies used to increase grain yield in temperate regions. However, poor cold tolerance in castor inhibits seed germination, resulting in lower seedling emergence and biomass. Here, the elite castor variety Tongbi 5 was used to identify the differential abundance protein species (DAPS) between cold stress (4 °C) and control conditions (30 °C) imbibed seeds. As a result, 127 DAPS were identified according to isobaric tag for relative and absolute quantification (iTRAQ) strategy. These DAPS were mainly involved in carbohydrate and energy metabolism, translation and posttranslational modification, stress response, lipid transport and metabolism, and signal transduction. Enzyme-linked immunosorbent assays (ELISA) demonstrated that the quantitative proteomics data collected here were reliable. This study provided some invaluable insights into the cold stress responses of early imbibed castor seeds: (1) up-accumulation of all DAPS involved in translation might confer cold tolerance by promoting protein synthesis; (2) stress-related proteins probably protect the cell against damage caused by cold stress; (3) up-accumulation of key DAPS associated with fatty acid biosynthesis might facilitate resistance or adaptation of imbibed castor seeds to cold stress by the increased content of unsaturated fatty acid (UFA). The data has been deposited to the ProteomeXchange with identifier PXD010043.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jianqiang Mu ◽  
Yajuan Fu ◽  
Bucang Liu ◽  
Yao Zhang ◽  
Aiying Wang ◽  
...  

Abstract Background Saussurea involucrata survives in extreme arctic conditions and is very cold-resistant. This species grows in rocky, mountainous areas with elevations of 2400–4100 m, which are snow-covered year-round and are subject to freezing temperatures. S. involucrata’s ability to survive in an extreme low-temperature environment suggests that it has particularly high photosynthetic efficiency, providing a magnificent model, and rich gene pool, for the analysis of plant cold stress response. Fructose-1, 6-bisphosphate aldolase (FBA) is a key enzyme in the photosynthesis process and also mediates the conversion of fructose 1, 6-bisphosphate (FBP) into dihydroxyacetone phosphate (DHAP) and glycerol triphosphate (GAP) during glycolysis and gluconeogenesis. The molecular mechanisms underlying S. involucrata’s cold tolerance are still unclear; therefore, our work aims to investigate the role of FBA in plant cold-stress response. Results In this study, we identified a cold-responsive gene, SiFBA5, based on a preliminary low-temperature, genome-wide transcriptional profiling of S. involucrata. Expression analysis indicated that cold temperatures rapidly induced transcriptional expression of SiFBA5, suggesting that SiFBA5 participates in the initial stress response. Subcellular localization analysis revealed that SiFBA5 is localized to the chloroplast. Transgenic tomato plants that overexpressed SiFBA5 were generated using a CaMV 35S promoter. Phenotypic observation suggested that the transgenic plants displayed increased cold tolerance and photosynthetic efficiency in comparison with wild-type plants. Conclusion Cold stress has a detrimental impact on crop yield. Our results demonstrated that SiFBA5 positively regulates plant response to cold stress, which is of great significance for increasing crop yield under cold stress conditions.


2015 ◽  
Vol 112 (9) ◽  
pp. 2882-2887 ◽  
Author(s):  
Selim Terhzaz ◽  
Nicholas M. Teets ◽  
Pablo Cabrero ◽  
Louise Henderson ◽  
Michael G. Ritchie ◽  
...  

The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.


2020 ◽  
Author(s):  
Mohammad Aslam ◽  
Kenji Sugita ◽  
Yuan Qin ◽  
Abidur Rahman

Abstract Background: The phytohormone auxin and microRNA-mediated regulation of gene expressions are key regulators for plant growth and development at both optimal and under low-temperature stress conditions. However, the mechanistic link between microRNA and auxin in regulating plant cold stress response remains elusive. Results: To better understand the role of microRNA in the crosstalk between auxin and cold stress responses, we took advantage of the mutants of Arabidopsis thaliana with altered response to auxin transport and signal. Screening of the mutants for root growth recovery after cold stress at 4°C revealed that the auxin signaling mutant, solitary root 1 ( slr1; mutation in Aux/IAA14), shows a hypersensitive response to cold stress. Genome-wide expression analysis of miRNA in wild-type and slr1 mutant roots using next-generation sequencing revealed 180 known and 71 novel cold-responsive microRNAs. Cold stress also increased the abundance of 26 nt-31 nt small RNA population in slr1 compared with wild-type. Comparative analysis of microRNA expression shows significant differential expression of 13 known and 7 novel miRNAs in slr1 at 4°C compared with wild-type. Target gene expression analysis of the members from one potential candidate miRNAs, miR169 revealed the possible involvement of miR169- NF-YA module in the auxin-mediated cold stress response. Conclusions: Taken together, these results indicate that SLR/IAA14, a transcriptional repressor of auxin signaling, plays a crucial role in integrating miRNA in auxin and cold responses.


Sign in / Sign up

Export Citation Format

Share Document