scholarly journals Quantitative Proteomic Analysis of Castor (Ricinus communis L.) Seeds During Early Imbibition Provided Novel Insights into Cold Stress Response

2019 ◽  
Vol 20 (2) ◽  
pp. 355 ◽  
Author(s):  
Xiaoyu Wang ◽  
Min Li ◽  
Xuming Liu ◽  
Lixue Zhang ◽  
Qiong Duan ◽  
...  

Early planting is one of the strategies used to increase grain yield in temperate regions. However, poor cold tolerance in castor inhibits seed germination, resulting in lower seedling emergence and biomass. Here, the elite castor variety Tongbi 5 was used to identify the differential abundance protein species (DAPS) between cold stress (4 °C) and control conditions (30 °C) imbibed seeds. As a result, 127 DAPS were identified according to isobaric tag for relative and absolute quantification (iTRAQ) strategy. These DAPS were mainly involved in carbohydrate and energy metabolism, translation and posttranslational modification, stress response, lipid transport and metabolism, and signal transduction. Enzyme-linked immunosorbent assays (ELISA) demonstrated that the quantitative proteomics data collected here were reliable. This study provided some invaluable insights into the cold stress responses of early imbibed castor seeds: (1) up-accumulation of all DAPS involved in translation might confer cold tolerance by promoting protein synthesis; (2) stress-related proteins probably protect the cell against damage caused by cold stress; (3) up-accumulation of key DAPS associated with fatty acid biosynthesis might facilitate resistance or adaptation of imbibed castor seeds to cold stress by the increased content of unsaturated fatty acid (UFA). The data has been deposited to the ProteomeXchange with identifier PXD010043.

2019 ◽  
Author(s):  
Qingyuan Li ◽  
Conglin Xiang ◽  
Lin Xu ◽  
Jinghua Cui ◽  
Shao Fu ◽  
...  

Abstract Background Pennisetum giganteum, an abundant, fast-growing perennial C4 grass that belongs to the genus Pennisetum, family Poaceae, has been developed as a source of biomass for mushroom cultivation and production, as a source of forage for cattle and sheep, and as a tool to remedy soil erosion. However, having a chilling-sensitive nature, P. giganteum seedlings need to be protected while overwintering in most temperate climate regions. Results To elucidate the cold stress responses of P. giganteum, we carried out comprehensive full-length transcriptomes from leaf and root tissues under room temperature (RT) and chilling temperature (CT) using PacBio Iso-Seq long reads. We identified 196,124 and 140,766 full-length consensus transcripts in the RT and CT samples, respectively. We then systematically performed functional annotation, transcription factor identification, long non-coding RNAs (lncRNAs) prediction, and simple sequence repeat (SSR) analysis of those full-length transcriptomes. Isoform analysis revealed that alternative splicing events may be induced by cold stress in P. giganteum, and transcript variants may be involved in C18 unsaturated fatty acid biosynthesis and metabolism pathways at chilling temperature in P. giganteum. Furthermore, the fatty acid composition determination and gene expression level analysis supported that C18 unsaturated fatty acid biosynthesis and metabolism pathways may play roles during cold stress in P. giganteum. Conclusions We provide the first comprehensive full-length transcriptomic resource for the abundant and fast-growing perennial grass Pennisetum giganteum. Our results provide a useful transcriptomic resource for exploring the biological pathways involved in the cold stress responses of P. giganteum.


2019 ◽  
Author(s):  
Qingyuan Li ◽  
Conglin Xiang ◽  
Lin Xu ◽  
Jinghua Cui ◽  
Shao Fu ◽  
...  

Abstract Background Pennisetum giganteum, an abundant, fast-growing perennial C4 grass that belongs to the genus Pennisetum, family Poaceae, has been developed as a source of biomass for mushroom cultivation and production, as a source of forage for cattle and sheep, and as a tool to remedy soil erosion. However, having a chilling-sensitive nature, P. giganteum seedlings need to be protected while overwintering in most temperate climate regions. Results To elucidate the cold stress responses of P. giganteum, we carried out comprehensive full-length transcriptomes from leaf and root tissues under room temperature (RT) and chilling temperature (CT) using PacBio Iso-Seq long reads. We identified 196,124 and 140,766 full-length consensus transcripts in the RT and CT samples, respectively. We then systematically performed functional annotation, transcription factor identification, long non-coding RNAs (lncRNAs) prediction, and simple sequence repeat (SSR) analysis of those full-length transcriptomes. Moreover, isoform analysis revealed that alternative splicing events may be induced by cold stress in P. giganteum, and transcript variants may be involved in C18 unsaturated fatty acid biosynthesis and metabolism pathways at chilling temperature in P. giganteum. Conclusions We provide the first comprehensive full-length transcriptomic resource for the abundant and fast-growing perennial grass Pennisetum giganteum. Our results provide a useful genomic resource for exploring the biological pathways involved in the cold stress responses of P. giganteum.


2021 ◽  
Author(s):  
Zemin Wang ◽  
Darren Chern Jan Wong ◽  
Yi Wang ◽  
Guangzhao Xu ◽  
Chong Ren ◽  
...  

Abstract Cultivated grapevine (Vitis) is a highly valued horticultural crop, and cold stress affects its growth and productivity. Wild Amur grape (Vitis amurensis) PAT1 (Phytochrome A signal transduction 1, VaPAT1) is induced by low temperature, and ectopic expression of VaPAT1 enhances cold tolerance in Arabidopsis (Arabidopsis thaliana). However, little is known about the molecular mechanism of VaPAT1 during the cold stress response in grapevine. Here, we confirmed the overexpression of VaPAT1 in transformed grape calli enhanced cold tolerance. Yeast two-hybrid and bimolecular fluorescence complementation assays highlighted an interaction between VaPAT1 with INDETERMINATE-DOMAIN 3 (VaIDD3). A role of VaIDD3 in cold tolerance was also indicated. Transcriptome analysis revealed VaPAT1 and VaIDD3 overexpression and cold treatment coordinately modulate the expression of stress-related genes including lipoxygenase 3 (LOX3), a gene encoding a key jasmonate biosynthesis enzyme. Co-expression network analysis indicated LOX3 might be a downstream target of VaPAT1. Both electrophoretic mobility shift and dual luciferase reporter assays showed the VaPAT1-IDD3 complex binds to the IDD-box (AGACAAA) in the VaLOX3 promoter to activate its expression. Overexpression of both VaPAT1 and VaIDD3 increased the transcription of VaLOX3 and JA levels in transgenic grape calli. Conversely, VaPAT1-SRDX (dominant repression) and CRISPR/Cas9-mediated mutagenesis of PAT1-ED causing the loss of the C-terminus in grape calli dramatically prohibited the accumulation of VaLOX3 and JA levels during cold treatment. Together, these findings point to a pivotal role of VaPAT1 in the cold stress response in grape by regulating JA biosynthesis.


2008 ◽  
Vol 68 (4) ◽  
pp. 572-578 ◽  
Author(s):  
R H Straub ◽  
G Pongratz ◽  
H Hirvonen ◽  
T Pohjolainen ◽  
M Mikkelsson ◽  
...  

Objective:Acute stress in patients with rheumatoid arthritis (RA) should stimulate a strong stress response. After cryotherapy, we expected to observe an increase of hormones of the adrenal gland and the sympathetic nervous system.Methods:A total of 55 patients with RA were recruited for whole-body cryotherapy at −110°C and −60°C, and local cold therapy between −20°C and −30°C for 7 days. We measured plasma levels of steroid hormones, neuropeptide Y (sympathetic marker), and interleukin (IL)6 daily before and after cryotherapy.Results:In both therapy groups with/without glucocorticoids (GC), hormone and IL6 levels at baseline and 5 h after cold stress did not change over 7 days of cryotherapy. In patients without GC, plasma levels of cortisol and androstenedione were highest after −110°C cold stress followed by −60°C or local cold stress. The opposite was found in patients under GC therapy, in whom, unexpectedly, −110°C cold stress elicited the smallest responses. In patients without GC, adrenal cortisol production increased relative to other adrenal steroids, and again the opposite was seen under GC therapy with a loss of cortisol and an increase of dehydroepiandrosterone. Importantly, there was no sympathetic stress response in both groups. Patients without GC and −110°C cold stress demonstrated higher plasma IL6 compared to the other treatment groups (not observed under GC), but they showed the best clinical response.Conclusions:We detected an inadequate stress response in patients with GC. It is further shown that the sympathetic stress response was inadequate in patients with/without GC. Paradoxically, plasma levels of IL6 increased under strong cold stress in patients without GC. These findings confirm dysfunctional stress axes in RA.


Author(s):  
Daniel Lunn ◽  
James G Wallis ◽  
John Browse

Abstract A central goal of green chemistry is to produce industrially useful fatty acids in oilseed crops. Although genes encoding suitable fatty acid-modifying enzymes are available from more than a dozen wild species, progress has been limited because expression of these enzymes in transgenic plants produces only low yields of the desired products. For example, fatty acid hydroxylase 12 (FAH12) from castor (Ricinus communis) produces only 17% hydroxy fatty acids (HFAs) when expressed in Arabidopsis (Arabidopsis thaliana), compared to 90% HFA in castor seeds. The transgenic plants also have reduced oil content and seed vigor. Here, we review experiments that have provided for steady increases HFA accumulation and oil content. This research has led to exciting new discoveries of enzymes and regulatory processes in the pathways of both seed oil synthesis and lipid metabolism in other parts of the plant. Recent investigations have revealed that HFA-accumulating seeds are unable to rapidly mobilize HFA- containing triacylglycerol (TAG) storage lipid after germination to provide carbon and energy for seedling development, resulting in reduced seedling establishment. These findings present a new opportunity to investigate a different, key area of lipid metabolism - the pathways of TAG lipolysis and β-oxidation in germinating seedlings.


Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 494 ◽  
Author(s):  
Xiaokang Zhuo ◽  
Tangchun Zheng ◽  
Zhiyong Zhang ◽  
Yichi Zhang ◽  
Liangbao Jiang ◽  
...  

NAC transcription factors (TFs) participate in multiple biological processes, including biotic and abiotic stress responses, signal transduction and development. Cold stress can adversely impact plant growth and development, thereby limiting agricultural productivity. Prunus mume, an excellent horticultural crop, is widely cultivated in Asian countries. Its flower can tolerate freezing-stress in the early spring. To investigate the putative NAC genes responsible for cold-stress, we identified and analyzed 113 high-confidence PmNAC genes and characterized them by bioinformatics tools and expression profiles. These PmNACs were clustered into 14 sub-families and distributed on eight chromosomes and scaffolds, with the highest number located on chromosome 3. Duplicated events resulted in a large gene family; 15 and 8 pairs of PmNACs were the result of tandem and segmental duplicates, respectively. Moreover, three membrane-bound proteins (PmNAC59/66/73) and three miRNA-targeted genes (PmNAC40/41/83) were identified. Most PmNAC genes presented tissue-specific and time-specific expression patterns. Sixteen PmNACs (PmNAC11/19/20/23/41/48/58/74/75/76/78/79/85/86/103/111) exhibited down-regulation during flower bud opening and are, therefore, putative candidates for dormancy and cold-tolerance. Seventeen genes (PmNAC11/12/17/21/29/42/30/48/59/66/73/75/85/86/93/99/111) were highly expressed in stem during winter and are putative candidates for freezing resistance. The cold-stress response pattern of 15 putative PmNACs was observed under 4 °C at different treatment times. The expression of 10 genes (PmNAC11/20/23/40/42/48/57/60/66/86) was upregulated, while 5 genes (PmNAC59/61/82/85/107) were significantly inhibited. The putative candidates, thus identified, have the potential for breeding the cold-tolerant horticultural plants. This study increases our understanding of functions of the NAC gene family in cold tolerance, thereby potentially intensifying the molecular breeding programs of woody plants.


2020 ◽  
Author(s):  
Changbing Huang ◽  
Chun Jiang ◽  
limin Jin ◽  
Huanchao Zhang

Abstract Background:Hemerocallis fulva is a perennial herb belonging to Hemerocallis of Hemerocallis. Because of the large and bright colors, it is often used as a garden ornamental plant. But most varieties of H. fulva on the market will wither in winter, which will affect their beauty. It is very important to study the effect of low temperature stress on the physiological indexes of H. fulva and understand the cold tolerance of different H. fulva. MiRNA is a kind of endogenous non coding small molecular RNA with length of 21-24nt. It mainly inhibits protein translation by cutting target genes, and plays an important role in the development of organisms, gene expression and biological stress. Low temperature is the main abiotic stress affecting the production of H. fulva in China, which hinders the growth and development of plants. A comprehensive understanding of the expression pattern of microRNA in H. fulva under low temperature stress can improve our understanding of microRNA mediated stress response. Although there are many studies on miRNAs of various plants under cold stress at home and abroad, there are few studies on miRNAs related to cold stress of H. fulva. It is of great significance to explore the cold stress resistant gene resources of H. fulva, especially the identification and functional research of miRNA closely related to cold stress, for the breeding of excellent H. fulva.Results A total of 5619 cold-responsive miRNAs, 315 putative novel and 5 304 conserved miRNAs, were identified from the leaves and roots of two different varieties ‘Jinyan’ (cold-tolerant) and ‘Lucretius ’ (cold-sensitive), which were stressed under -4 oC for 24 h. Twelve conserved and three novel miRNAs (novel-miR10, novel-miR19 and novel-miR48) were differentially expressed in leaves of ‘Jinyan’ under cold stress. Novel-miR19, novel-miR29 and novel-miR30 were up-regulated in roots of ‘Jinyan’ under cold stress. Thirteen and two conserved miRNAs were deferentially expressed in leaves and roots of ‘Lucretius’ after cold stress. The deferentially expressed miRNAs between two cultivars under cold stress include novel miRNAs and the members of the miR156, miR166 and miR319 families. A total of 6 598 target genes for 6 516 known miRNAs and 82 novel miRNAs were predicted by bioinformatic analysis, mainly involved in metabolic processes and stress responses. Ten differentially expressed miRNAs and predicted target genes were confirmed by quantitative reverse transcription PCR(q-PCR), and the expressional changes of target genes were negatively correlated to differentially expressed miRNAs. Our data indicated that some candidate miRNAs (e.g., miR156a-3-p, miR319a, and novel-miR19) may play important roles in plant response to cold stress.Conclusions Our study indicates that some putative target genes and miRNA mediated metabolic processes and stress responses are significant to cold tolerance in H. fulva.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jin-Xing Liao ◽  
Kai-Huai Li ◽  
Jin-Pei Wang ◽  
Jia-Ru Deng ◽  
Qiong-Guang Liu ◽  
...  

Abstract Background Xanthomonas citri pv. citri (Xcc) is a citrus canker causing Gram-negative bacteria. Currently, little is known about the biological and molecular responses of Xcc to low temperatures. Results Results depicted that low temperature significantly reduced growth and increased biofilm formation and unsaturated fatty acid (UFA) ratio in Xcc. At low temperature Xcc formed branching structured motility. Global transcriptome analysis revealed that low temperature modulates multiple signaling networks and essential cellular processes such as carbon, nitrogen and fatty acid metabolism in Xcc. Differential expression of genes associated with type IV pilus system and pathogenesis are important cellular adaptive responses of Xcc to cold stress. Conclusions Study provides clear insights into biological characteristics and genome-wide transcriptional analysis based molecular mechanism of Xcc in response to low temperature.


1963 ◽  
Vol 41 (1) ◽  
pp. 1879-1885 ◽  
Author(s):  
David T. Canvin

Castor seeds were collected at 3- and 6-day intervals after blossoming until maturity. The seeds were analyzed for protein and oil content and the fatty acid composition of the oil was determined by gas–liquid chromatography. Oil formation began 21 days after blossoming and two-thirds of the oil was synthesized in the next 20 days; the remaining one-third was formed in the last 20-day period. Protein synthesis occurred over a longer period of time but was accelerated during the middle 20-day period.Ricinoleic acid, the characteristic component of castor oil, was not present in the very young seed, but appeared when the seed was 12 days old and represented 90% of the fatty acids when the seed was 36 days old. After this time the fatty acid composition of the oil remained constant and characteristic. In the intervening 24-day period, the amount of ricinoleic acid was lower than normal. The amount of each fatty acid component, expressed on a per seed basis, increased over the entire period of development and there was no evidence of substantial conversion of oleic or linoleic acid to ricinoleic acid.


2020 ◽  
Author(s):  
Jianqiang Mu ◽  
Yajuan Fu ◽  
Bucang Liu ◽  
Yao Zhang ◽  
Aiying Wang ◽  
...  

Abstract Background Saussurea involucrate survives in extreme arctic conditions with strong cold resistant ability. The species occurs in rocky, mountainous habitats at elevations of approximately 2400-4100m with year-round snowfall and freezing temperatures providing a magnificent model and abundant gene pool for dissecting plant stress responses. Fructose-1,6-Bisphosphate Aldolase (FBA) mediates the reverse conversion of fructose 1,6-bisphosphate (FBP) into dihydroxyacetone phosphate (DHAP) and glycerol triphosphate (GAP) during glycolysis or gluconeogenesis, which is the key enzyme in this reaction. Saussurea involucrate can survive in extremely low temperature environment, which shows that it has extremely high photosynthesis efficiency. Significantly, the underlying mechanism of its cold tolerance is yet to be unveiled. Therefore, our work aims to explore potential molecular mechanisms. Results In this study, we identified a cold-responsive gene SiFBA5 that based on a preliminary low-temperature genome-wide transcriptional profiling in S. involucrata. Expression analysis showed that cold temperature rapidly induced transcriptional expression of SiFBA5, suggesting that SiFBA5 participates in initial stress responses. Subcellular localization showed that SiFBA5 is localized to the chloroplast. We then generated transgenic tomato plants overexpressing SiFBA5 derived by a CaMV 35S promoter. Phenotypic observation suggested that the transgenic overexpress plants displayed increased cold tolerance, photosynthesis efficiency, and carbohydrate accumulation in comparison with wild-type plants. Conclusion Collectively, our results demonstrated that SiFBA5 positively regulates plant response to cold stress, making it a promising candidate for improving cold tolerance in crops.


Sign in / Sign up

Export Citation Format

Share Document