scholarly journals Reliability and Stability Challenges in ABCD Task fMRI Data

2021 ◽  
Author(s):  
James T Kennedy ◽  
Michael P Harms ◽  
Ozlem Korucuoglu ◽  
Serguei V Astafiev ◽  
Deanna M Barch ◽  
...  

Trait stability of measures is an essential requirement for individual differences research. Functional MRI has been increasingly used in studies that rely on the assumption of trait stability, such as attempts to relate task related brain activation to individual differences in behavior and psychopathology. However, recent research using adult samples has questioned the trait stability of task-fMRI measures, as assessed by test-retest correlations. To date, little is known about trait stability of task fMRI in children. Here, we examined within-session reliability and longitudinal stability of task-fMRI using data from the Adolescent Brain Cognitive Development (ABCD) Study using its tasks focused on reward processing, response inhibition, and working memory. We also evaluated the effects of factors potentially affecting reliability and stability. Reliability and stability [quantified via an intraclass correlation (ICC) that focuses on rank consistency] was poor in virtually all brain regions, with an average ICC of .078 and .054 for short (within-session) and long-term (between-session) ICCs, respectively, in regions of interest (ROIs) historically-recruited by the tasks. ICC values in ROIs did not exceed the 'poor' cut-off of .4, and in fact rarely exceeded .2 (only 5.9%). Motion had a pronounced effect on estimated ICCs, with the lowest motion quartile of participants having a mean reliability/stability three times higher (albeit still 'poor') than the highest motion quartile. Regions with stronger activation tended to show higher ICCs, with the absolute value of activity and reliability/stability correlating at .53. Across regions, the magnitude of age-related longitudinal (between-session) changes positively correlated with the longitudinal stability of individual differences, which suggests developmental change was not necessarily responsible for poor stability. Poor reliability and stability of task-fMRI, particularly in children, diminishes potential utility of fMRI data due to a drastic reduction of effect sizes and, consequently, statistical power for the detection of brain-behavior associations. This essential issue needs to be addressed through optimization of preprocessing pipelines and data denoising methods.

2019 ◽  
Author(s):  
František Váša ◽  
Rafael Romero-Garcia ◽  
Manfred G. Kitzbichler ◽  
Jakob Seidlitz ◽  
Kirstie J. Whitaker ◽  
...  

AbstractAdolescent changes in human brain function are not entirely understood. Here we used multi-echo functional magnetic resonance imaging (fMRI) to measure developmental change in functional connectivity (FC) of resting-state oscillations between pairs of 330 cortical regions and 16 subcortical regions in N=298 healthy adolescents. Participants were aged 14-26 years and were scanned on two or more occasions at least 6 months apart. We found two distinct modes of age-related change in FC: “conservative” and “disruptive”. Conservative development was characteristic of primary cortex, which was strongly connected at 14 years and became even more connected in the period 14-26 years. Disruptive development was characteristic of association cortex, hippocampus and amygdala, which were not strongly connected at 14 years but became more strongly connected during adolescence. We defined the maturational index (MI) as the signed coefficient of the linear relationship between baseline FC (at 14 years,FC14) and adolescent change in FC (∆FC14−26). Disruptive systems (with negative MI) were functionally specialised for social cognition and autobiographical memory and were significantly co-located with prior maps of aerobic glycolysis (AG), AG-related gene expression, post-natal expansion of cortical surface area, and adolescent shrinkage of cortical depth. We conclude that human brain organization is disrupted during adolescence by the emergence of strong functional connectivity of subcortical nuclei and association cortical areas, representing metabolically expensive re-modelling of synaptic connectivity between brain regions that were not strongly connected in childhood. We suggest that this re-modelling process may support emergence of social skills and self-awareness during healthy human adolescence.


2021 ◽  
Author(s):  
Paul Alexander Bloom ◽  
Michelle VanTieghem ◽  
Laurel Gabard-Durnam ◽  
Dylan G Gee ◽  
Jessica Flannery ◽  
...  

There has been considerable interest in the development of the amygdala and its connections with medial prefrontal cortex (mPFC) given the central role of these brain regions in emotional processes. While several studies have suggested that this circuitry exhibits functional changes across the first two decades of life, they have typically employed cross-sectional designs, and findings have been mixed. Additionally, analytic choices may contribute to discrepancies across studies. Here we used an accelerated longitudinal design to examine task-evoked changes in amygdala-mPFC circuitry from 4-22 years of age (N=98; 183 total scans; 1-3 scans per participant). Participants were recruited from the greater Los Angeles area, and completed an event-related emotional face (fear, neutral) task designed to be appropriate for the wide age range. 'Multiverse' analyses examined the robustness of our findings to fMRI analysis choices. 2808 parallel analyses varying in preprocessing and modeling choices found evidence for average age-related decreases in amygdala reactivity to faces. Greater amygdala reactivity at younger ages was attributable to elevated responses during the first few trials relative to later trials. Within-participant changes in amygdala reactivity with age could not be differentiated from between-participant differences, however. Across analysis decision points, we did not find consistent evidence of age-related change in amygdala-mPFC connectivity through generalized psychophysiological interaction (gPPI) or beta-series correlation (BSC) methods. We also did not find evidence for associations between separation anxiety behaviors and amygdala reactivity or amygdala-mPFC connectivity. Within the context of this faces task and age range, age-related changes in amygdala reactivity were more robust to processing pipeline than were task-evoked functional connectivity measures, particularly those using gPPI. These findings highlight both the challenges in estimating developmental change in longitudinal cohorts and the value of multiverse approaches in developmental neuroimaging for assessing robustness of results.


2021 ◽  
Author(s):  
Michael I Demidenko ◽  
Edward Huntley ◽  
Alexander Samuel Weigard ◽  
Daniel Keating ◽  
Adriene M. Beltz

Adolescent risk-taking, including sensation seeking (SS), is often attributed to developmental changes in connectivity among brain regions implicated in cognitive control and reward processing. Despite considerable scientific and popular interest in this neurodevelopmental framework, there are few empirical investigations of adolescent network connectivity–let alone examinations of its links to SS behavior. The studies that have been done focus on mean-based approaches and leave unanswered questions about individual differences in neurodevelopment and behavior. The goal of this paper is to take a person-specific approach to the study of adolescent functional connectivity during reward processing, and to examine links between connectivity and self-reported SS behavior in 104 adolescents (MAge=19.3; SDAge=1.3). Using group iterative multiple model estimation (GIMME), person-specific connectivity during two neuroimaging runs of a monetary incentive delay task was estimated among 12 a priori brain regions of interest representing reward, cognitive, and salience networks. Two data-driven subgroups were detected, a finding that was consistent between both neuroimaging runs, but associations with SS were only found in the first run, potentially reflecting neural habituation in the second run. Specifically, the subgroup that had unique connections between reward-related regions had greater SS and showed a distinctive relation between connectivity strength in the reward network and SS. These findings provide novel evidence for heterogeneity in adolescent brain-behavior relations by showing that subsets of adolescents have unique associations between neural reward processing and SS. Findings have broader implications for future work on reward processing, as they demonstrate that brain-behavior relations may attenuate across runs.


2021 ◽  
Author(s):  
Stephanie Matijevic ◽  
Jessica R. Andrews-Hanna ◽  
Aubrey Anne Ladd Wank ◽  
Lee Ryan ◽  
Matthew D. Grilli

The ability to generate episodic details while recollecting autobiographical events is believed to depend on a collection of brain regions that form a posterior medial network (PMN). How age-related differences in episodic detail generation relate to the PMN, however, remains unclear. The present study sought to examine individual differences, and the role of age, in PMN resting state functional connectivity (rsFC) associations with episodic detail generation. Late middle-aged and older adults (N = 41, ages 52-81), and young adults (N = 21, ages 19-35) were asked to describe recent personal events, and these memory narratives were coded for episodic, semantic and ‘miscellaneous’ details. Independent components analysis and regions-of-interest analyses were used to assess rsFC within anterior PMN connections (hippocampal and medial prefrontal) and posterior PMN connections (hippocampal, parahippocampal and parieto-occipital). Compared to younger adults, older adults produced memory narratives with lower episodic specificity (ratio of episodic:total details) and a greater amount of semantic detail. Among the older adults, episodic detail amounts and episodic specificity were reduced with increasing age. There were no significant age differences in PMN rsFC. Stronger anterior PMN rsFC was related to lower episodic detail in the older adult group, but not in the young. Among the older adults, increasing age brought on an association between increased anterior PMN rsFC and reduced episodic specificity. The present study provides evidence that functional connectivity within the PMN, particularly anterior PMN, tracks individual differences in the amount of episodic details retrieved by older adults. Furthermore, these brain-behavior relationships appear to be age-specific.


2021 ◽  
Author(s):  
Gidon Levakov ◽  
Joshua Faskowitz ◽  
Galia Avidan ◽  
Olaf Sporns

AbstractThe connectome, a comprehensive map of the brain’s anatomical connections, is often summarized as a matrix comprising all dyadic connections among pairs of brain regions. This representation cannot capture higher-order relations within the brain graph. Connectome embedding (CE) addresses this limitation by creating compact vectorized representations of brain nodes capturing their context in the global network topology. Here, nodes “context” is defined as random walks on the brain graph and as such, represents a generative model of diffusive communication around nodes. Applied to group-averaged structural connectivity, CE was previously shown to capture relations between inter-hemispheric homologous brain regions and uncover putative missing edges from the network reconstruction. Here we extend this framework to explore individual differences with a novel embedding alignment approach. We test this approach in two lifespan datasets (NKI: n=542; Cam-CAN: n=601) that include diffusion-weighted imaging, resting-state fMRI, demographics and behavioral measures. We demonstrate that modeling functional connectivity with CE substantially improves structural to functional connectivity mapping both at the group and subject level. Furthermore, age-related differences in this structure-function mapping are preserved and enhanced. Importantly, CE captures individual differences by out-of-sample prediction of age and intelligence. The resulting predictive accuracy was higher compared to using structural connectivity and functional connectivity. We attribute these findings to the capacity of the CE to incorporate aspects of both anatomy (the structural graph) and function (diffusive communication). Our novel approach allows mapping individual differences in the connectome through structure to function and behavior.


2014 ◽  
Vol 28 (3) ◽  
pp. 148-161 ◽  
Author(s):  
David Friedman ◽  
Ray Johnson

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013 ; Nessler, Friedman, Johnson, & Bersick, 2007 ; Nessler, Johnson, Bersick, & Friedman, 2006 ). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.


2020 ◽  
Vol 636 ◽  
pp. 189-205
Author(s):  
A Lescroël ◽  
PO’B Lyver ◽  
D Jongsomjit ◽  
S Veloz ◽  
KM Dugger ◽  
...  

Inter-individual differences in demographic traits of iteroparous species can arise through learning and maturation, as well as from permanent differences in individual ‘quality’ and sex-specific constraints. As the ability to acquire energy determines the resources an individual can allocate to reproduction and self-maintenance, foraging behavior is a key trait to study to better understand the mechanisms underlying these differences. So far, most seabird studies have focused on the effect of maturation and learning processes on foraging performance, while only a few have included measures of individual quality. Here, we investigated the effects of age, breeding experience, sex, and individual breeding quality on the foraging behavior and location of 83 known-age Adélie penguins at Cape Bird, Ross Sea, Antarctica. Over a 2 yr period, we showed that (1) high-quality birds dived deeper than lower quality ones, apparently catching a higher number of prey per dive and targeting different foraging locations; (2) females performed longer foraging trips and a higher number of dives compared to males; (3) there were no significant age-related differences in foraging behavior; and (4) breeding experience had a weak influence on foraging behavior. We suggest that high-quality individuals have higher physiological ability, enabling them to dive deeper and forage more effectively. Further inquiry should focus on determining the physiological differences among penguins of different quality.


2019 ◽  
Author(s):  
Alexandra M Rodman ◽  
Katherine Powers ◽  
Catherine Insel ◽  
Erik K Kastman ◽  
Katherine Kabotyanski ◽  
...  

Adults titrate the degree of physical effort they are willing to expend according to the magnitude of reward they expect to obtain, a process guided by incentive motivation. However, it remains unclear whether adolescents, who are undergoing normative developmental changes in cognitive and reward processing, translate incentive motivation into action in a way that is similarly tuned to reward value and economical in effort utilization. The present study adapted a classic physical effort paradigm to quantify age-related changes in motivation-based and strategic markers of effort exertion for monetary rewards from adolescence to early adulthood. One hundred and three participants aged 12-23 years completed a task that involved exerting low or high amounts of physical effort, in the form of a hand grip, to earn low or high amounts of money. Adolescents and young adults exhibited highly similar incentive-modulated effort for reward according to measures of peak grip force and speed, suggesting that motivation for monetary reward is consistent across age. However, young adults expended energy more economically and strategically: whereas adolescents were prone to exert excess physical effort beyond what was required to earn reward, young adults were more likely to strategically prepare before each grip phase and conserve energy by opting out of low reward trials. This work extends theoretical models of development of incentive-driven behavior by demonstrating that layered on similarity in motivational value for monetary reward, there are important differences in the way behavior is flexibly adjusted in the presence of reward from adolescence to young adulthood.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alan M. Daniel ◽  
Brenda G. Rushing ◽  
Karla Y. Tapia Menchaca

AbstractUnderstanding the emotional reaction to loss, or frustration, is a critical problem for the field of mental health. Animal models of loss have pointed to the opioid system as a nexus of frustration, physical pain, and substance abuse. However, few attempts have been made to connect the results of animal models of loss to human behavior. Allelic differences in the human mu opioid receptor gene, notably the A118G single nucleotide polymorphism, have been linked to individual differences in pain sensitivity, depressive symptoms, and reward processing. The present study explored the relationship between A118G and behavior in two frustrating tasks in humans. Results showed that carriers of the mutant G-allele were slower to recover behavior following a reward downshift and abandoned a frustrating task earlier than those without the mutation. Additionally, G-carriers were more sensitive to physical pain. These results highlight the overlap between frustration and pain, and suggest that genetic variation in opioid tone may contribute to individual differences in vulnerability and resilience following emotional disturbances.


Sign in / Sign up

Export Citation Format

Share Document