scholarly journals Chigno/CG11180 and SUMO are Chinmo-Interacting Proteins with a Role in Drosophila Testes Stem Cells

2021 ◽  
Author(s):  
Leanna Rinehart ◽  
Wendy H Stewart ◽  
Natalie G Luffman ◽  
Matthew Wawersik ◽  
Oliver Kerscher

Maintenance of sexual identity on the cellular level ensures the proper function of sexually dimorphic genes expressed in the brain and gonads. Disruption of genes that regulate sex maintenance alters the cellular structure of these tissues and leads to infertility and diseases, such as diabetes, obesity, and gonadal cancers. Sex maintenance in the testis of Drosophila melanogaster depends on the previously identified gene chinmo (Chronologically inappropriate morphogenesis). Chinmo's effect on testis differentiation has been investigated in detail, but there is still much to be elucidated about its structure, function, and interactions with other proteins. Using a two-hybrid screen, we find that Chinmo interacts with itself, the small ubiquitin-like modifier SUMO, the novel protein CG11180, and four other proteins (CG4318, Ova (Ovaries absent), Taf3 (TBP-associated factor 3), and CG18269). Since both Chinmo and CG11180 contain sumoylation sites and SUMO-interacting motifs (SIMs), we analyzed their interaction in more detail. Using site-directed mutagenesis of a unique SIM in CG11180, we demonstrate that Chinmo's interaction with CG11180 is SUMO-dependent. Furthermore, to assess the functional relevance of both SUMO and CG11180, we performed RNAi-mediated knockdown of both proteins in somatic cells of the Drosophila testis. Using this approach, we find that CG11180 and SUMO are required in somatic cells of adult testes, and that reduction of either protein causes formation of germ cell tumors. Overall, our work indicates that SUMO functionally links Chinmo and CG11180 in somatic cells of the adult Drosophila testis. Consistent with the CG11180 knockdown phenotype in male testes, and to underscore its connection to Chinmo, we propose the name Childless Gambino (Chigno) for CG11180.

2018 ◽  
Vol 2 (3) ◽  
pp. 76-80 ◽  
Author(s):  
Chen Wang

Sex differences in the brain are prominent features across the animal kingdom. Understanding the anatomical and regulatory mechanisms behind these differences is critical for both explaining sexually dimorphic behaviors and developing sex-targeted treatments for neurological disorders. Clinical studies considering sex biases and basic research on animal models have provided much evidence for the existence of sex differences in the brain and, in a larger sense, sexual dimorphisms in the nervous system. However, due to the complexity of structure and dimorphic behaviors, it is yet unclear precisely how neuronal sexual dimorphisms are regulated on a molecular or cellular level. This commentary reviews available tools for investigating sexual dimorphisms using a simple model organism, the roundworm Caenorhabditis elegans ( C. elegans), which enables one to study gene regulation at single-cell resolution with a number of cutting-edge molecular and genetic technologies. I highlight the doublesex/mab-3 family of transcription factors, first discovered in invertebrates, and their roles in a potentially universal regulatory mechanism underlying neuronal sexual dimorphisms. Studies of these transcription factors using C. elegans, fruit flies, and vertebrates will promote our understanding of fundamental mechanisms behind sex differences in the brain.


Author(s):  
Antonio Giovannetti ◽  
Gianluca Susi ◽  
Paola Casti ◽  
Arianna Mencattini ◽  
Sandra Pusil ◽  
...  

AbstractIn this paper, we present the novel Deep-MEG approach in which image-based representations of magnetoencephalography (MEG) data are combined with ensemble classifiers based on deep convolutional neural networks. For the scope of predicting the early signs of Alzheimer’s disease (AD), functional connectivity (FC) measures between the brain bio-magnetic signals originated from spatially separated brain regions are used as MEG data representations for the analysis. After stacking the FC indicators relative to different frequency bands into multiple images, a deep transfer learning model is used to extract different sets of deep features and to derive improved classification ensembles. The proposed Deep-MEG architectures were tested on a set of resting-state MEG recordings and their corresponding magnetic resonance imaging scans, from a longitudinal study involving 87 subjects. Accuracy values of 89% and 87% were obtained, respectively, for the early prediction of AD conversion in a sample of 54 mild cognitive impairment subjects and in a sample of 87 subjects, including 33 healthy controls. These results indicate that the proposed Deep-MEG approach is a powerful tool for detecting early alterations in the spectral–temporal connectivity profiles and in their spatial relationships.


Author(s):  
Dominic Gascho ◽  
Michael J. Thali ◽  
Rosa M. Martinez ◽  
Stephan A. Bolliger

AbstractThe computed tomography (CT) scan of a 19-year-old man who died from an occipito-frontal gunshot wound presented an impressive radiating fracture line where the entire sagittal suture burst due to the high intracranial pressure that arose from a near-contact shot from a 9 mm bullet fired from a Glock 17 pistol. Photorealistic depictions of the radiating fracture lines along the cranial bones were created using three-dimensional reconstruction methods, such as the novel cinematic rendering technique that simulates the propagation and interaction of light when it passes through volumetric data. Since the brain had collapsed, depiction of soft tissue was insufficient on CT images. An additional magnetic resonance imaging (MRI) examination was performed, which enabled the diagnostic assessment of cerebral injuries.


2010 ◽  
Vol 391 (12) ◽  
Author(s):  
Reiko Hanada ◽  
Toshikatsu Hanada ◽  
Josef M. Penninger

Abstract The TNF family molecule RANKL and its receptor RANK are key regulators of bone remodeling, lymph node formation, and mammary gland development during pregnancy. RANKL and RANK are also expressed in the central nervous systems (CNS). However, the functional relevance of RANKL/RANK in the brain was entirely unknown. Recently, our group reported that the RANKL/RANK signaling pathway has an essential role in the central regulation of body temperature via the prostaglandin axis. This review discusses novel aspects of the RANKL/RANK system as key regulators of fever and female basal body temperature in the CNS.


Life ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
René Huber ◽  
Sandra Augsten ◽  
Holger Kirsten ◽  
Roland Zell ◽  
Axel Stelzner ◽  
...  

In rheumatoid arthritis (RA), the expression of many pro-destructive/pro-inflammatory proteins depends on the transcription factor AP-1. Therefore, our aim was to analyze the presence and functional relevance of mutations in the coding regions of the AP-1 subunits of the fos and jun family in peripheral blood (PB) and synovial membranes (SM) of RA and osteoarthritis patients (OA, disease control), as well as normal controls (NC). Using the non-isotopic RNAse cleavage assay, one known polymorphism (T252C: silent; rs1046117; present in RA, OA, and NC) and three novel germline mutations of the cfos gene were detected: (i) C361G/A367G: Gln121Glu/Ile123Val, denoted as “fos121/123”; present only in one OA sample; (ii) G374A: Arg125Lys, “fos125”; and (iii) C217A/G374A: Leu73Met/Arg125Lys, “fos73/125”, the latter two exclusively present in RA. In addition, three novel somatic cjun mutations (604–606ΔCAG: ΔGln202, “jun202”; C706T: Pro236Ser, “jun236”; G750A: silent) were found exclusively in the RA SM. Tansgenic expression of fos125 and fos73/125 mutants in NIH-3T3 cells induced an activation of reporter constructs containing either the MMP-1 (matrix metalloproteinase) promoter (3- and 4-fold, respectively) or a pentameric AP-1 site (approximately 5-fold). Combined expression of these two cfos mutants with cjun wildtype or mutants (jun202, jun236) further enhanced reporter expression of the pentameric AP-1 construct. Finally, genotyping for the novel functionally relevant germline mutations in 298 RA, 288 OA, and 484 NC samples revealed no association with RA. Thus, functional cfos/cjun mutants may contribute to local joint inflammation/destruction in selected patients with RA by altering the transactivation capacity of AP-1 complexes.


Author(s):  
Ehsan T. Esfahani ◽  
Shrey Pareek ◽  
Pramod Chembrammel ◽  
Mostafa Ghobadi ◽  
Thenkurussi Kesavadas

Recognition of user’s mental engagement is imperative to the success of robotic rehabilitation. The paper explores the novel paradigm in robotic rehabilitation of using Passive BCI as opposed to the conventional Active ones. We have designed experiments to determine a user’s level of mental engagement. In our experimental study, we record the brain activity of 3 healthy subjects during multiple sessions where subjects need to navigate through a maze using a haptic system with variable resistance/assistance. Using the data obtained through the experiments we highlight the drawbacks of using conventional workload metrics as indicators of human engagement, thus asserting that Motor and Cognitive Workloads be differentiated. Additionally we propose a new set of features: differential PSD of Cz-Poz at alpha, Beta and Sigma band, (Mental engagement) and relative C3-C4 at beta (Motor Workload) to distinguish Normal Cases from those instances when haptic where applied with an accuracy of 92.93%. Mental engagement is calculated using the power spectral density of the Theta band (4–7 Hz) in the parietal-midline (Pz) with respect to the central midline (Cz). The above information can be used to adjust robotic rehabilitation parameters I accordance with the user’s needs. The adjustment may be in the force levels, difficulty level of the task or increasing the speed of the task.


2021 ◽  
Author(s):  
Tomoya Nakai ◽  
Shinji Nishimoto

Which part of the brain contributes to our complex cognitive processes? Studies have revealed contributions of the cerebellum and subcortex to higher-order cognitive functions; however it is unclear whether such functional representations are preserved across the cortex, cerebellum, and subcortex. In this study, we used functional magnetic resonance imaging data with 103 cognitive tasks and constructed three voxel-wise encoding and decoding models independently using cortical, cerebellar, and subcortical voxels. Representational similarity analysis revealed that the structure of task representations is preserved across the three brain parts. Principal component analysis visualized distinct organizations of abstract cognitive functions in each part of the cerebellum and subcortex. More than 90% of the cognitive tasks were decodable from the cerebellum and subcortical activities, even for the novel tasks not included in model training. Furthermore, we discovered that the cerebellum and subcortex have sufficient information to reconstruct activity in the cerebral cortex.


2020 ◽  
Vol 16 (12) ◽  
pp. e1008418
Author(s):  
Thomas F. Varley ◽  
Olaf Sporns ◽  
Aina Puce ◽  
John Beggs

Whether the brain operates at a critical “tipping” point is a long standing scientific question, with evidence from both cellular and systems-scale studies suggesting that the brain does sit in, or near, a critical regime. Neuroimaging studies of humans in altered states of consciousness have prompted the suggestion that maintenance of critical dynamics is necessary for the emergence of consciousness and complex cognition, and that reduced or disorganized consciousness may be associated with deviations from criticality. Unfortunately, many of the cellular-level studies reporting signs of criticality were performed in non-conscious systems (in vitro neuronal cultures) or unconscious animals (e.g. anaesthetized rats). Here we attempted to address this knowledge gap by exploring critical brain dynamics in invasive ECoG recordings from multiple sessions with a single macaque as the animal transitioned from consciousness to unconsciousness under different anaesthetics (ketamine and propofol). We use a previously-validated test of criticality: avalanche dynamics to assess the differences in brain dynamics between normal consciousness and both drug-states. Propofol and ketamine were selected due to their differential effects on consciousness (ketamine, but not propofol, is known to induce an unusual state known as “dissociative anaesthesia”). Our analyses indicate that propofol dramatically restricted the size and duration of avalanches, while ketamine allowed for more awake-like dynamics to persist. In addition, propofol, but not ketamine, triggered a large reduction in the complexity of brain dynamics. All states, however, showed some signs of persistent criticality when testing for exponent relations and universal shape-collapse. Further, maintenance of critical brain dynamics may be important for regulation and control of conscious awareness.


2011 ◽  
Vol 441 (1) ◽  
pp. 209-217 ◽  
Author(s):  
Iraia García-Santisteban ◽  
Sonia Bañuelos ◽  
Jose A. Rodríguez

The mechanisms that regulate the nucleocytoplasmic localization of human deubiquitinases remain largely unknown. The nuclear export receptor CRM1 binds to specific amino acid motifs termed NESs (nuclear export sequences). By using in silico prediction and experimental validation of candidate sequences, we identified 32 active NESs and 78 inactive NES-like motifs in human deubiquitinases. These results allowed us to evaluate the performance of three programs widely used for NES prediction, and to add novel information to the recently redefined NES consensus. The novel NESs identified in the present study reveal a subset of 22 deubiquitinases bearing motifs that might mediate their binding to CRM1. We tested the effect of the CRM1 inhibitor LMB (leptomycin B) on the localization of YFP (yellow fluorescent protein)- or GFP (green fluorescent protein)-tagged versions of six NES-bearing deubiquitinases [USP (ubiquitin-specific peptidase) 1, USP3, USP7, USP21, CYLD (cylindromatosis) and OTUD7B (OTU-domain-containing 7B)]. YFP–USP21 and, to a lesser extent, GFP–OTUD7B relocated from the cytoplasm to the nucleus in the presence of LMB, revealing their nucleocytoplasmic shuttling capability. Two sequence motifs in USP21 had been identified during our survey as active NESs in the export assay. Using site-directed mutagenesis, we show that one of these motifs mediates USP21 nuclear export, whereas the second motif is not functional in the context of full-length USP21.


Author(s):  
Abhinav Anand ◽  
Neha Sharma ◽  
Monica Gulati ◽  
Navneet Khurana

Alzheimer's disease (AD), exhibiting accumulation of amyloid beta (Aβ) peptide as a foremost protagonist, is one of the top five causes of deaths. It is a neurodegenerative disorder (ND) that causes a progressive decline in memory and cognitive abilities. It is characterized by deposition of Aβ plaques and neurofibrillary tangles (NFTs) in the neurons, which in turn causes a decline in the brain acetylcholine levels. Aβ hypothesis is the most accepted hypothesis pertaining to the pathogenesis of AD. Amyloid Precursor Protein (APP) is constitutively present in brain and it is cleaved by three proteolytic enzymes (i.e., alpha, beta, and gamma secretases). Beta and gamma secretases cleave APP to form Aβ. Ubiquitin Proteasome System (UPS) is involved in the clearing of Aβ plaques. AD also involves impairment in UPS. The novel disease-modifying approaches involve inhibition of beta and gamma secretases. A number of clinical trials are going on worldwide with moieties targeting beta and gamma secretases. This chapter deals with an overview of APP and its enzymatic cleavage leading to AD.


Sign in / Sign up

Export Citation Format

Share Document