scholarly journals Microlitter pollution in the marine environment and preliminary evidences of in vitro cytotoxic effects on two Mediterranean commercial fish species

2021 ◽  
Author(s):  
Andrea Miccoli ◽  
Emanuele Mancini ◽  
Paolo Roberto Saraceni ◽  
Giancarlo Della Ventura ◽  
Giuseppe Scapigliati ◽  
...  

Marine litter, which is composed mainly of plastics, is recognized as one of the most serious threats to marine ecosystems and a global environmental concern. Microplastics (MPs) densities were estimated in all environmental compartments: marine organisms are highly exposed to and ingest them, resulting in disruption of biological functions. Ecotoxicological approaches have also started elucidating the potential severity of MPs in controlled laboratory studies, but the commercially-available and pristine materials employed hardly reflect the actual composition of the environmental litter, which can be contaminated by chemical pollutants or biological agents. Building on the lack of research employing marine environmental MPs or microlitter as a whole, we characterized the quantity and quality of litter in the coastal epipelagic and in the digestive tract of two commercially-relevant fish species, and exposed primary cell cultures of mucosal and lymphoid organs to marine microlitter. A concentration of 0.30 ± 0.02 microlitter items m-3 was found in the water column of the Northern Tyrrhenian sea. μFT-IR analysis revealed that particles of plastic origin, namely polypropylene, HDP E and polyamide, were present in 100% and 83.3% of M. merluccius and M. barbatus stomachs, respectively, which overall ingested 14.67 ± 4.10 and 5.50 ± 1.97 items. Microlitter was confirmed as a vector of bacteria, fungi and flagellates. Lastly, and for the first time, the apical end-point of viability was significantly reduced in splenic cells exposed in vitro to two microlitter conditions. Considering the role of the spleen in the mounting of adaptive immune responses, our results warrant more in-depth investigations for clarifying the actual susceptibility of the biota to anthropogenic microliter.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mariam Lofty Khaled ◽  
Yelena Bykhovskaya ◽  
Chunfang Gu ◽  
Alice Liu ◽  
Michelle D. Drewry ◽  
...  

AbstractKeratoconus (KC) is the most common corneal ectatic disorder affecting >300,000 people in the US. KC normally has its onset in adolescence, progressively worsening through the third to fourth decades of life. KC patients report significant impaired vision-related quality of life. Genetic factors play an important role in KC pathogenesis. To identify novel genes in familial KC patients, we performed whole exome and genome sequencing in a four-generation family. We identified potential variants in the PPIP5K2 and PCSK1 genes. Using in vitro cellular model and in vivo gene-trap mouse model, we found critical evidence to support the role of PPIP5K2 in normal corneal function and KC pathogenesis. The gene-trap mouse showed irregular corneal surfaces and pathological corneal thinning resembling KC. For the first time, we have integrated corneal tomography and pachymetry mapping into characterization of mouse corneal phenotypes which could be widely implemented in basic and translational research for KC diagnosis and therapy in the future.


Author(s):  
Mohamad Hossein Pourhanifeh ◽  
Kazem Abbaszadeh-Goudarzi ◽  
Mohammad Goodarzi ◽  
Sara G.M. Piccirillo ◽  
Alimohammad Shafiee ◽  
...  

: Melanoma is the most life-threatening and aggressive class of skin malignancies. The incidence of melanoma has steadily increased. Metastatic melanoma is greatly resistant to standard anti-melanomatreatments such as chemotherapy, and 5-year survival rate of cases with melanoma who have metastatic form of disease is less than 10%. The contributing role of apoptosis, angiogenesis and autophagy in the pathophysiology of melanoma has been previously demonstrated. Thus, it is extremely urgent to search for complementary therapeutic approachesthat couldenhance the quality of life of subjects and reduce treatment resistance and adverse effects. Resveratrol, known as a polyphenol component present in grapes and some plants, has anti-cancer properties due to its function as an apoptosis inducer in tumor cells, and anti-angiogenic agent to prevent metastasis. However, more clinical trials should be conducted to prove resveratrol efficacy. : Herein, for first time, we summarize current knowledge of anti-cancerous activities of resveratrol in melanoma.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Miao-Miao Zhao ◽  
Wei-Li Yang ◽  
Fang-Yuan Yang ◽  
Li Zhang ◽  
Wei-Jin Huang ◽  
...  

AbstractTo discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Zhang ◽  
Guoyu Yin ◽  
Heping Zhao ◽  
Hanzhi Ling ◽  
Zhen Xie ◽  
...  

AbstractIn inflamed joints, enhanced hyaluronic acid (HA) degradation is closely related to the pathogenesis of rheumatoid arthritis (RA). KIAA1199 has been identified as a hyaladherin that mediates the intracellular degradation of HA, but its extracellular function remains unclear. In this study, we found that the serum and synovial levels of secreted KIAA1199 (sKIAA1199) and low-molecular-weight HA (LMW-HA, MW < 100 kDa) in RA patients were significantly increased, and the positive correlation between them was shown for the first time. Of note, treatment with anti-KIAA1199 mAb effectively alleviated the severity of arthritis and reduced serum LMW-HA levels and cytokine secretion in collagen-induced arthritis (CIA) mice. In vitro, sKIAA1199 was shown to mediate exogenous HA degradation by attaching to the cell membrane of RA fibroblast-like synoviosytes (RA FLS). Furthermore, the HA-degrading activity of sKIAA1199 depended largely on its adhesion to the membrane, which was achieved by its G8 domain binding to ANXA1. In vivo, kiaa1199-KO mice exhibited greater resistance to collagen-induced arthritis. Interestingly, this resistance could be partially reversed by intra-articular injection of vectors encoding full-length KIAA1199 instead of G8-deleted KIAA119 mutant, which further confirmed the indispensable role of G8 domain in KIAA1199 involvement in RA pathological processes. Mechanically, the activation of NF-κB by interleukin-6 (IL-6) through PI3K/Akt signaling is suggested to be the main pathway to induce KIAA1199 expression in RA FLS. In conclusion, our study supported the contribution of sKIAA1199 to RA pathogenesis, providing a new therapeutic target for RA by blocking sKIAA1199-mediated HA degradation.


2021 ◽  
Vol 22 (7) ◽  
pp. 3687
Author(s):  
Joanna Homa ◽  
Alina Klosowska ◽  
Magdalena Chadzinska

Arginase is the manganese metalloenzyme catalyzing the conversion of l-arginine to l-ornithine and urea. In vertebrates, arginase is involved in the immune response, tissue regeneration, and wound healing and is an important marker of alternative anti-inflammatory polarization of macrophages. In invertebrates, data concerning the role of arginase in these processes are very limited. Therefore, in the present study, we focused on the changes in arginase activity in the coelomocytes of Eisenia andrei. We studied the effects of lipopolysaccharide (LPS), hydrogen peroxide (H2O2), heavy metals ions (e.g., Mn2+), parasite infection, wound healing, and short-term fasting (5 days) on arginase activity. For the first time in earthworms, we described arginase activity in the coelomocytes and found that it can be up-regulated upon in vitro stimulation with LPS and H2O2 and in the presence of Mn2+ ions. Moreover, arginase activity was also up-regulated in animals in vivo infected with nematodes or experiencing segment amputation, but not in fasting earthworms. Furthermore, we confirmed that the activity of coelomocyte arginase can be suppressed by l-norvaline. Our studies strongly suggest that similarly to the vertebrates, also in the earthworms, coelomocyte arginase is an important element of the immune response and wound healing processes.


2021 ◽  
Vol 22 (3) ◽  
pp. 1163
Author(s):  
Gaia Palmini ◽  
Cecilia Romagnoli ◽  
Simone Donati ◽  
Roberto Zonefrati ◽  
Gianna Galli ◽  
...  

Telangiectatic osteosarcoma (TOS) is an aggressive variant of osteosarcoma (OS) with distinctive radiographic, gross, microscopic features, and prognostic implications. Despite several studies on OS, we are still far from understanding the molecular mechanisms of TOS. In recent years, many studies have demonstrated not only that microRNAs (miRNAs) are involved in OS tumorigenesis, development, and metastasis, but also that the presence in high-grade types of OS of cancer stem cells (CSCs) plays an important role in tumor progression. Despite these findings, nothing has been described previously about the expression of miRNAs and the presence of CSCs in human TOS. Therefore, we have isolated/characterized a putative CSC cell line from human TOS (TOS-CSCs) and evaluated the expression levels of several miRNAs in TOS-CSCs using real-time quantitative assays. We show, for the first time, the existence of CSCs in human TOS, highlighting the in vitro establishment of this unique stabilized cell line and an identification of a preliminary expression of the miRNA profile, characteristic of TOS-CSCs. These findings represent an important step in the study of the biology of one of the most aggressive variants of OS and the role of miRNAs in TOS-CSC behavior.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chen Hang ◽  
Shanojie Zhao ◽  
Tiejun Wang ◽  
Yan Zhang

Abstract Background Breast cancer (BrCa) is the most common female malignancy worldwide and has the highest morbidity among all cancers in females. Unfortunately, the mechanisms of BrCa growth and metastasis, which lead to a poor prognosis in BrCa patients, have not been well characterized. Methods Immunohistochemistry (IHC) was performed on a BrCa tissue microarray (TMA) containing 80 samples to evaluate ubiquitin protein ligase E3C (UBE3C) expression. In addition, a series of cellular experiments were conducted to reveal the role of UBE3C in BrCa. Results In this research, we identified UBE3C as an oncogenic factor in BrCa growth and metastasis for the first time. UBE3C expression was upregulated in BrCa tissues compared with adjacent breast tissues. BrCa patients with high nuclear UBE3C expression in tumors showed remarkably worse overall survival (OS) than those with low nuclear expression. Knockdown of UBE3C expression in MCF-7 and MDA-MB-453 BrCa cells inhibited cell proliferation, migration and invasion in vitro, while overexpression of UBE3C in these cells exerted the opposite effects. Moreover, UBE3C promoted β-catenin nuclear accumulation, leading to the activation of the Wnt/β-catenin signaling pathway in BrCa cells. Conclusion Collectively, these results imply that UBE3C plays crucial roles in BrCa development and progression and that UBE3C may be a novel target for the prevention and treatment of BrCa.


2010 ◽  
Vol 54 (6) ◽  
pp. 2345-2353 ◽  
Author(s):  
Nicolas A. Margot ◽  
Craig S. Gibbs ◽  
Michael D. Miller

ABSTRACT Bevirimat (BVM) is the first of a new class of anti-HIV drugs with a novel mode of action known as maturation inhibitors. BVM inhibits the last cleavage of the Gag polyprotein by HIV-1 protease, leading to the accumulation of the p25 capsid-small peptide 1 (SP1) intermediate and resulting in noninfectious HIV-1 virions. Early clinical studies of BVM showed that over 50% of the patients treated with BVM did not respond to treatment. We investigated the impact of prior antiretroviral (ARV) treatment and/or natural genetic diversity on BVM susceptibility by conducting in vitro phenotypic analyses of viruses made from patient samples. We generated 31 recombinant viruses containing the entire gag and protease genes from 31 plasma samples from HIV-1-infected patients with (n = 21) or without (n = 10) prior ARV experience. We found that 58% of the patient isolates tested had a >10-fold reduced susceptibility to BVM, regardless of the patient's ARV experience or the level of isolate resistance to protease inhibitors. Analysis of mutants with site-directed mutations confirmed the role of the V370A SP1 polymorphism (SP1-V7A) in resistance to BVM. Furthermore, we demonstrated for the first time that a capsid polymorphism, V362I (CA protein-V230I), is also a major mutation conferring resistance to BVM. In contrast, none of the previously defined resistance-conferring mutations in Gag selected in vitro (H358Y, L363M, L363F, A364V, A366V, or A366T) were found to occur among the viruses that we analyzed. Our results should be helpful in the design of diagnostics for prediction of the potential benefit of BVM treatment in HIV-1-infected patients.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Allen M Andres ◽  
Chengqun Huang ◽  
Eric P Ratliff ◽  
Genaro Hernandez ◽  
Pamela Lee ◽  
...  

Autophagy-dependent mitochondrial turnover in response to cellular stress is necessary for maintaining cellular homeostasis. However, the mechanisms that govern the selective targeting of damaged mitochondria are poorly understood. Parkin, an E3 ubiquitin ligase, has been shown to be essential for the selective clearance of damaged mitochondria. Parkin is expressed in the heart, yet its function has not been investigated in the context of cardioprotection. We previously reported that autophagy is required for cardioprotection by ischemic preconditioning (IPC). In the present study, we used simulated ischemia in vitro and IPC in hearts (in vivo and ex vivo) to investigate the role of Parkin in mediating cardioprotection. In HL-1 cells, simulated ischemia induced Parkin translocation to mitochondria and mitochondrial elimination. Mitochondrial loss was blunted in Atg5-deficient cells, revealing the requirement for autophagy in mitochondrial elimination. Consistent with previous reports implicating p62/SQSTM1 in mitophagy, we found that downregulation of p62 attenuated mitophagy and exacerbated cell death in HL-1 cardiomyocytes subjected to simulated ischemia. While wild type mice showed p62 translocation to mitochondria after IPC, Parkin knockout mice exhibited attenuated translocation of p62 to mitochondria. Importantly, ablation of Parkin in mice abolished the cardioprotective effects of IPC. These results reveal for the first time the crucial role of Parkin and mitophagy in cardioprotection.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Hongmei Peng ◽  
Oscar Carretero ◽  
Xiao-Ping Yang ◽  
Pablo Nakagawa ◽  
Jiang Xu ◽  
...  

Elevated interleukin-4 (IL-4) levels are positively related to cardiac fibrosis in heart failure and hypertension. Using Balb/c exhibiting high circulating IL-4, Balb/c- Il4 tm2Nnt (IL-4 knockout with Balb/c background, IL-4 -/- ) and C57BL/6 mice, as well as cultured cardiac fibroblasts (CFs), we hypothesized that 1) high levels of IL-4 result in cardiac fibrosis, making the heart susceptible to angiotensin II (Ang II)-induced damage, and 2) IL-4 potently stimulates collagen production by CFs. Each strain (9- to 12-week old male) received vehicle or Ang II (1.4 mg/kg/day, s.c. via osmotic mini-pump) for 8 weeks. Cardiac fibrosis and function were determined by histology and echocardiography, respectively. Compared to C57BL/6, Balb/c mice had doubled interstitial collagen in the heart, enlarged left ventricle and decreased cardiac function along with elevated cardiac IL-4 protein (1.00±0.08 in C57BL/6 vs 2.61±0.46 in Balb/c, p <0.05); all those changes were significantly attenuated in IL-4 -/- (Table 1). Ang II further deteriorated cardiac fibrosis and dysfunction in Balb/c; these detrimental effects were attenuated in IL-4 -/- , although the three strains had a similar level of hypertension. In vitro study revealed that IL-4Rα was constitutively expressed in CFs (Western blot), and IL-4 potently stimulated collagen production by CFs (hydroxproline assay, from 18.89±0.85 to 38.81±3.61 μg/mg at 10 ng/ml, p <0.01). Our study demonstrates for the first time that IL-4, as a potent pro-fibrotic cytokine in the heart, contributes to cardiac fibrotic remodeling and dysfunction. Thus IL-4 may be a potential therapeutic target for cardiac fibrosis and dysfunction.


Sign in / Sign up

Export Citation Format

Share Document