scholarly journals Simultaneous assessment of eight phosphorylated STAT residues in T-cells by flow cytometry.

2021 ◽  
Author(s):  
Emily Monk ◽  
Melinda Vassallo ◽  
Paulo Burke ◽  
Jeffrey Weber ◽  
Pratip Chattopadhyay ◽  
...  

Signal transducer and activator of transcription (STAT) proteins are a family of transcription factors controlling functions in immune responses and other cell types. Given their importance, we developed a flow cytometry panel to assess eight phosphorylated STAT residues in human T-cells, including six tyrosine residues across six STAT proteins (STAT1, STAT2, STAT3, STAT4, STAT5a, STAT6) and additional serine residues on STAT1 and STAT3. We applied this protocol to test the in vitro induction of pSTATs in response to CD3/CD28 activation and a panel of recombinant cytokines. We also assessed the pSTAT expression profiles of naive CD4+ T-cells polarized to Th1, Th2, Th17 or iTregs. pSTAT1(S727), pSTAT2(Y689) and pSTAT3(S727) were constitutively expressed in most T-cells, even in the absence of stimulation. For pSTAT1(S727) and pSTAT3(S727), we observed two positive states, high and low. Conversely, expression of pSTAT1(Y701), pSTAT3(Y705), pSTAT4(Y693) and pSTAT6(Y641) were absent in resting T-cells and only expressed with CD3/CD28 activation or with specific cytokines. Variable frequencies of pSTAT5a(Y694) expression were observed in resting T-cells, which increased with activation or specific cytokine stimulation (e.g. IL-2). IFN-beta stimulation enhanced frequencies of expressing cells for all pSTATs. Correlations among several pSTATs, particularly pSTAT1(S727)high and pSTAT3(S727)high were observed. While polarization resulted in increases in canonically associated pSTATs, other non-canonical pSTAT changes were also observed. Collectively, we developed, optimized, and tested a sensitive and rapid approach for simultaneously assessing phosphorylation of six STAT proteins. Using this approach, we made several novel observations of T-cell pSTAT induction in response to stimuli.

Blood ◽  
1999 ◽  
Vol 93 (6) ◽  
pp. 1980-1991 ◽  
Author(s):  
Sampsa Matikainen ◽  
Timo Sareneva ◽  
Tapani Ronni ◽  
Anne Lehtonen ◽  
Päivi J. Koskinen ◽  
...  

Interferon- (IFN-) is a pleiotropic cytokine that has antiviral, antiproliferative, and immunoregulatory functions. There is increasing evidence that IFN- has an important role in T-cell biology. We have analyzed the expression ofIL-2R, c-myc, and pim-1 genes in anti-CD3–activated human T lymphocytes. The induction of these genes is associated with interleukin-2 (IL-2)–induced T-cell proliferation. Treatment of T lymphocytes with IFN-, IL-2, IL-12, and IL-15 upregulated IL-2R, c-myc, andpim-1 gene expression. IFN- also sensitized T cells to IL-2–induced proliferation, further suggesting that IFN- may be involved in the regulation of T-cell mitogenesis. When we analyzed the nature of STAT proteins capable of binding to IL-2R,pim-1, and IRF-1 GAS elements after cytokine stimulation, we observed IFN-–induced binding of STAT1, STAT3, and STAT4, but not STAT5 to all of these elements. Yet, IFN- was able to activate binding of STAT5 to the high-affinity IFP53 GAS site. IFN- enhanced tyrosine phosphorylation of STAT1, STAT3, STAT4, STAT5a, and STAT5b. IL-12 induced STAT4 and IL-2 and IL-15 induced STAT5 binding to the GAS elements. Taken together, our results suggest that IFN-, IL-2, IL-12, and IL-15 have overlapping activities on human T cells. These findings thus emphasize the importance of IFN- as a T-cell regulatory cytokine.


2018 ◽  
Vol 50 (5) ◽  
pp. 1754-1763 ◽  
Author(s):  
Liping Wang ◽  
Chunyan Wang ◽  
Xuqiang Jia ◽  
Jing Yu

Background/Aims: A reduced prevalence of circulating regulatory T cells (Tregs)is a hallmark of inflammatory rheumatoid arthritis (RA). However, the underlying mechanisms of alterations of Tregs are unclear. Methods: The ratio of Tregs in peripheral blood of healthy controls (HCs) and patients with RA was determined by flow cytometry. MicroRNA (miRNA) expression profiles in exosomes derived from RA patients (RA-exosomes) and in those from HCs (HC-exosomes) were detected by microarray analysis, and miR-17 was measured by quantitative real-time PCR. Transforming growth factor beta receptor II (TGFBR II) expressed by T cells was measured by flow cytometry. The interaction between miR-17 and TGFBR II was evaluated by dual-luciferase reporter assay. Results: We found that RA-exosomes can selectively affect Treg differentiation in vitro. Several miRNAs are more abundant in the RA-exosomes than in HC-exosomes. Among those upregulated in patients with RA, miR-17 can suppress Treg induction by inhibiting the expression of TGFBR II. Conclusion: Our findings imply that altered miRNA expression in RA-exosomes may contribute to the pathogenesis of RA by disrupting the homeostasis of Tregs.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A117-A118
Author(s):  
Erica Braverman ◽  
Andrea Dobbs ◽  
Darlene Monlish ◽  
Craig Byersdorfer

BackgroundThe ideal adoptive cell therapy consists of memory-like T cells with enhanced oxidative potential. However, current expansion protocols drive T cells towards terminal differentiation, decreasing the number of T cells fit for the in vivo environment. AMP-activated protein kinase (AMPK), whose activity increases in memory cells, is a key regulator of mitochondrial biogenesis and oxidative metabolism, making AMPK activation an attractive candidate to improve adoptive T cell function.MethodsTo increase AMPK activity, AMPKγ, which controls the phosphorylation status of AMPKa and therefore activity of the AMPK complex, was cloned into a lentiviral plasmid downstream of the elongation factor 1a (EF1a) promoter and upstream of green fluorescent protein (GFP). An empty vector, containing GFP only, served as a negative control. Human T cells were transduced and expanded in vitro in the presence of IL-2. AMPK activity was assessed via immunoblot for phosphorylation of AMPKa on Thr172 and S555 on downstream target Unc-51-like kinase 1 (ULK1). Memory-marker expression and mitochondrial density (using Mitotracker Red) were analyzed by flow cytometry. Oxidative metabolism and spare respiratory capacity (SRC) were determined using the Seahorse Metabolic Analyzer. Fold changes of in vitro expansion were calculated by adjusting manual cell counts for GFP positivity and CD4+/CD8+ staining.ResultsAMPKγ was efficiently transduced and expressed by human T cells, which significantly increased AMPK activity (AMPKa phosphorylation 1.93 ± 0.05 vs 0.6 ± 0.09, p<0.001, ULK1 phosphorylation 1.28 ± 0.11 vs 0.67 ± 0.08, p<0.01). AMPKγ-overexpressing T cells augmented expression of memory markers CD62L, CD27, and CCR7, with an increased yield of stem cell memory-like T cells marked by co-expression of CD45RA and CD62L (figure 1). Mitochondrial density, SRC, and maximal oxygen consumption rates were similarly increased in AMPKγ-transduced cells (figure 2A,B). Further, while enhanced memory cell production is often linked with reduced proliferation, T cells with increased AMPK activity maintained and even trended towards increased rates of expansion compared to empty-transduced controls (figure 3A), with a measurable increase in CD4+ T cell percentages by flow cytometry (figure 3B).Abstract 106 Figure 1AMPK-transduced T cells increase expression of memory surface markers. Human T cells were transduced with AMPK-GFP or GFP-only control (Empty). Memory markers were assessed by flow cytometry on Days 7–14 of in vitro culture following expansion with IL-2. Plots are representative of 3 separate donorsAbstract 106 Figure 2AMPK-transduced T cells show enhanced mitochondrial density and SRC. (A) Human T cells transduced with AMPK-GFP or GFP-only (Empty) were stained with Mitotracker Red and fluorescence intensity compared between transduced cells and GFP- controls within the same culture to account for variability in Mitotracker dye staining. (B) AMPK and Empty transduced T cells were assessed via Seahorse Metabolic Analyzer using the Mito Stress Test. Results are representative of 3 separate donors. OCR = O2 consumption rateAbstract 106 Figure 3Proliferation is maintained in AMPK-transduced T cells, with enhanced recovery of CD4+ T cells. (A) Primary human T cells transduced with AMPK-GFP or GFP-only (Empty) were expanded in vitro in the presence of IL-2. Cells were manually counted and the ratio of day 7 to day 5 cell counts calculated to assess fold expansion over time. (B) At the same, CD4+ and CD8+ percentages were measured in GFP+ cells by flow cytometryConclusionsIncreasing AMPK activity endows T cells with a variety of characteristics ideal for adoptive cell therapy, including increased memory-marker expression, enhanced SRC and oxidative metabolism, equivalent to augmented in vitro expansion, and improved CD4+ T cell yields. Further studies are ongoing to assess the activity and function of AMPK-transduced CAR-T cells both in vitro and in vivo.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Débora Familiar-Macedo ◽  
Iury Amancio Paiva ◽  
Jessica Badolato-Corrêa da Silva ◽  
Fabiana Rabe de Carvalho ◽  
Helver Gonçalves Dias ◽  
...  

There have been reports of neurological abnormalities associated with the Zika virus (ZIKV), such as congenital Zika syndrome (CZS) in children born to mothers infected during pregnancy. We investigated how the immune response to ZIKV during pregnancy is primed and conduct a thorough evaluation of the inflammatory and cytotoxic profiles as well as the expression of CCR5 and CX3CR1. We compared the reactivity of T cells to ZIKV peptides in convalescent mothers infected during pregnancy. The child’s clinical outcome (i.e., born with or without CZS) was taken to be the variable. The cells were stimulated in vitro with ZIKV peptides and evaluated using the ELISPOT and flow cytometry assays. After in vitro stimulation with ZIKV peptides, we observed a tendency toward a higher Interferon gamma (IFN-γ)-producing T cell responses in mothers who had asymptomatic children and a higher CD107a expression in T cells in mothers who had children with CZS. We found a higher frequency of T cells expressing CD107a+ and co-expressing CX3CR1+CCR5+, which is much clearer in the T cells of mothers who had CZS children. We suggest that this differential profile influenced the clinical outcome of babies. These data need to be further investigated, including the evaluation of other ZIKV peptides and markers and functional assays.


1981 ◽  
Vol 3 (2) ◽  
pp. 75-84 ◽  
Author(s):  
T. Fuchs ◽  
L. Hammarström ◽  
C.I.E. Smith ◽  
J. Brundin

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A121-A121
Author(s):  
Nina Chu ◽  
Michael Overstreet ◽  
Ryan Gilbreth ◽  
Lori Clarke ◽  
Christina Gesse ◽  
...  

BackgroundChimeric antigen receptors (CARs) are engineered synthetic receptors that reprogram T cell specificity and function against a given antigen. Autologous CAR-T cell therapy has demonstrated potent efficacy against various hematological malignancies, but has yielded limited success against solid cancers. MEDI7028 is a CAR that targets oncofetal antigen glypican-3 (GPC3), which is expressed in 70–90% of hepatocellular carcinoma (HCC), but not in normal liver tissue. Transforming growth factor β (TGFβ) secretion is increased in advanced HCC, which creates an immunosuppressive milieu and facilitates cancer progression and poor prognosis. We tested whether the anti-tumor efficacy of a GPC3 CAR-T can be enhanced with the co-expression of dominant-negative TGFβRII (TGFβRIIDN).MethodsPrimary human T cells were lentivirally transduced to express GPC3 CAR both with and without TGFβRIIDN. Western blot and flow cytometry were performed on purified CAR-T cells to assess modulation of pathways and immune phenotypes driven by TGFβ in vitro. A xenograft model of human HCC cell line overexpressing TGFβ in immunodeficient mice was used to investigate the in vivo efficacy of TGFβRIIDN armored and unarmored CAR-T. Tumor infiltrating lymphocyte populations were analyzed by flow cytometry while serum cytokine levels were quantified with ELISA.ResultsArmoring GPC3 CAR-T with TGFβRIIDN nearly abolished phospho-SMAD2/3 expression upon exposure to recombinant human TGFβ in vitro, indicating that the TGFβ signaling axis was successfully blocked by expression of the dominant-negative receptor. Additionally, expression of TGFβRIIDN suppressed TGFβ-driven CD103 upregulation, further demonstrating attenuation of the pathway by this armoring strategy. In vivo, the TGFβRIIDN armored CAR-T achieved superior tumor regression and delayed tumor regrowth compared to the unarmored CAR-T. The armored CAR-T cells infiltrated HCC tumors more abundantly than their unarmored counterparts, and were phenotypically less exhausted and less differentiated. In line with these observations, we detected significantly more interferon gamma (IFNγ) at peak response and decreased alpha-fetoprotein in the serum of mice treated with armored cells compared to mice receiving unarmored CAR-T, demonstrating in vivo functional superiority of TGFβRIIDN armored CAR-T therapy.ConclusionsArmoring GPC3 CAR-T with TGFβRIIDN abrogates the signaling of TGFβ in vitro and enhances the anti-tumor efficacy of GPC3 CAR-T against TGFβ-expressing HCC tumors in vivo, proving TGFβRIIDN to be an effective armoring strategy against TGFβ-expressing solid malignancies in preclinical models.Ethics ApprovalThe study was approved by AstraZeneca’s Ethics Board and Institutional Animal Care and Use Committee (IACUC).


Sign in / Sign up

Export Citation Format

Share Document