scholarly journals A correlation map of genome-wide DNA methylation patterns between paired human brain and buccal samples

2021 ◽  
Author(s):  
Yasmine Sommerer ◽  
Olena Ohlei ◽  
Valerija Dobricic ◽  
Derek H. Oakley ◽  
Tanja Wesse ◽  
...  

Epigenome-wide association studies (EWAS) assessing the link between DNA methylation (DNAm) and phenotypes related to structural brain measures, cognitive function, and neurodegenerative diseases are becoming increasingly more popular. Due to the inaccessibility of brain tissue in humans, several studies use peripheral tissues such as blood, buccal swabs, and saliva as surrogates. To aid the functional interpretation of EWAS findings in such settings, there is a need to assess the correlation of DNAm variability across tissues in the same individuals. In this study, we performed a correlation analysis between DNAm data of a total of n=120 matched post-mortem buccal and prefrontal cortex samples. We identified nearly 25,000 (3% of approximately 730,000) cytosine-phosphate-guanine (CpG) sites showing significant (False Discovery Rate q < 0.05) correlations between buccal and PFC samples. Correlated CpG sites showed a preponderance to being located in promoter regions and showed a significant enrichment of being determined by genetic factors, i.e. methylation quantitative trait loci (mQTL), based on buccal and dorsolateral prefrontal cortex mQTL databases. Our novel buccal-brain DNAm correlation map will provide a valuable resource for future EWAS using buccal samples for studying DNAm effects on phenotypes relating to the brain. All correlation results are made freely available to the public online.

Endocrinology ◽  
2009 ◽  
Vol 150 (10) ◽  
pp. 4681-4691 ◽  
Author(s):  
Aparna Mahakali Zama ◽  
Mehmet Uzumcu

Abstract Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-β, which was down-regulated, whereas ERα was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 μg/kg·d or 100 mg/kg·d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERα and ERβ genes in postnatal d 50–60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERβ promoter regions (P &lt; 0.05), whereas the ERα promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P &lt; 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.


2020 ◽  
Vol 48 (7) ◽  
pp. 3949-3961 ◽  
Author(s):  
Chien-Chu Lin ◽  
Yi-Ping Chen ◽  
Wei-Zen Yang ◽  
James C K Shen ◽  
Hanna S Yuan

Abstract DNA methyltransferases are primary enzymes for cytosine methylation at CpG sites of epigenetic gene regulation in mammals. De novo methyltransferases DNMT3A and DNMT3B create DNA methylation patterns during development, but how they differentially implement genomic DNA methylation patterns is poorly understood. Here, we report crystal structures of the catalytic domain of human DNMT3B–3L complex, noncovalently bound with and without DNA of different sequences. Human DNMT3B uses two flexible loops to enclose DNA and employs its catalytic loop to flip out the cytosine base. As opposed to DNMT3A, DNMT3B specifically recognizes DNA with CpGpG sites via residues Asn779 and Lys777 in its more stable and well-ordered target recognition domain loop to facilitate processive methylation of tandemly repeated CpG sites. We also identify a proton wire water channel for the final deprotonation step, revealing the complete working mechanism for cytosine methylation by DNMT3B and providing the structural basis for DNMT3B mutation-induced hypomethylation in immunodeficiency, centromere instability and facial anomalies syndrome.


2020 ◽  
Author(s):  
Zhengyuan Wu ◽  
Miao Yu ◽  
Jing-yuan Fan ◽  
Zhen-pei Wen ◽  
Tian-yu Ren ◽  
...  

Abstract Background: Soft tissue sarcomas (STSs) are heterogeneous at the clinical with a variable tendency of aggressive behavior. Methods: In this study, we constructed a specific DNA methylation-based classification to identify the distinct prognosis-subtypes of STSs based on the DNA methylation spectrum from the TCGA database.Results: Eventually, samples were clustered into four subgroups, and their survival curves were distinct from each other. Meanwhile, the samples in each subgroup reflected differentially in several clinical features. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was also conducted on the genes of the corresponding promoter regions of the above‐described specific methylation sites, revealing that these genes were mainly concentrated in certain cancer‑associated biological functions and pathways. In addition, we calculated the differences among clustered methylation sites and performed the specific methylation sites with LASSO algorithm. The selection operator algorithm was employed to derive a risk signature model, and a prognostic signature based on these methylation sites performed well for risk stratification in STSs patients. At last, a nomogram consisted of clinical features and risk score was developed for the survival prediction. Conclusion: In conclusion, this study declares that DNA methylation-based STSs subtype classification is highly relevant for future development of personalized therapy as it identifies the prediction value of patient prognosis.


2020 ◽  
Author(s):  
Yucheng Wang ◽  
Eilis Hannon ◽  
Olivia A Grant ◽  
Tyler J Gorrie-Stone ◽  
Meena Kumari ◽  
...  

AbstractSex is an important covariate of epigenome-wide association studies due to its strong influence on DNA methylation patterns across numerous genomic positions. Nevertheless, many samples on the Gene Expression Omnibus (GEO) frequently lack a sex annotation or are incorrectly labelled. Considering the influence that sex imposes on DNA methylation patterns, it is necessary to ensure that methods for filtering poor samples and checking of sex assignment are accurate and widely applicable. In this paper, we presented a novel method to predict sex using only DNA methylation density signals, which can be readily applied to almost all DNA methylation datasets of different formats (raw IDATs or text files with only density signals) uploaded to GEO. We identified 4345 significantly (p < 0.01) sex-associated CpG sites present on both 450K and EPIC arrays, and constructed a sex classifier based on the two first components of PCAs from the two sex chromosomes. The proposed method is constructed using whole blood samples and exhibits good performance across a wide range of tissues. We further demonstrated that our method can be used to identify samples with sex chromosome aneuploidy, this function is validated by five Turner syndrome cases and one Klinefelter syndrome case. The proposed method has been integrated into the wateRmelon Bioconductor package.


2020 ◽  
Vol 21 (12) ◽  
pp. 4476
Author(s):  
Marcela A S Pinhel ◽  
Natália Y Noronha ◽  
Carolina F Nicoletti ◽  
Vanessa AB Pereira ◽  
Bruno AP de Oliveira ◽  
...  

Weight regulation and the magnitude of weight loss after a Roux-en-Y gastric bypass (RYGB) can be genetically determined. DNA methylation patterns and the expression of some genes can be altered after weight loss interventions, including RYGB. The present study aimed to evaluate how the gene expression and DNA methylation of PIK3R1, an obesity and insulin-related gene, change after RYGB. Blood samples were obtained from 13 women (35.9 ± 9.2 years) with severe obesity before and six months after surgical procedure. Whole blood transcriptome and epigenomic patterns were assessed by microarray-based, genome-wide technologies. A total of 1966 differentially expressed genes were identified in the pre- and postoperative periods of RYGB. From these, we observed that genes involved in obesity and insulin pathways were upregulated after surgery. Then, the PIK3R1 gene was selected for further RT-qPCR analysis and cytosine-guanine nucleotide (CpG) sites methylation evaluation. We observed that the PI3KR1 gene was upregulated, and six DNA methylation CpG sites were differently methylated after bariatric surgery. In conclusion, we found that RYGB upregulates genes involved in obesity and insulin pathways.


Epigenomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 251-265 ◽  
Author(s):  
Beatriz Garcia-Ruiz ◽  
Lorena Moreno ◽  
Gerard Muntané ◽  
Vanessa Sánchez-Gistau ◽  
Alfonso Gutiérrez-Zotes ◽  
...  

Aim: To investigate DDR1 methylation in blood and brain DNA in psychosis and its relationship with stress markers. Materials & methods: Saliva cortisol, blood neutrophil and lymphocyte counts, leukocyte DNA and psychological variables were collected from 60 patients with nonaffective psychosis and 40 healthy controls (HC). Brain dorsolateral prefrontal cortex DNA from 35 patients with schizophrenia and 34 HC was studied. DDR1 methylation at 43 CpG sites was measured using the MassARRAY EpiTYPER platform. Results: We describe leukocyte DDR1 hypermethylation in patients with psychosis compared with HC; this hypermethylation is associated with psychological stress, neutrophil-to-lymphocyte ratios, and, in the dorsolateral prefrontal cortex, DDR1 methylation correlated with DDR1 isoform expression. Conclusion: We confirmed a relationship between stress and blood and brain DDR1 methylation in psychosis.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 263-264
Author(s):  
Kubra Z Cilkiz ◽  
Emilie C Baker ◽  
Penny K Riggs ◽  
Ronald D Randel ◽  
David G Riley ◽  
...  

Abstract This study investigated whether DNA methylation patterns changed over the first five yr of life within prenatally stressed (PNS) heifer calves compared to change within a Control group. Prenatal stress was induced by the transportation of pregnant Brahman cows for 2-hr periods at 60±5, 80± 5, 100±5, 120±5, and140±5d of gestation. White blood cells were sampled from the same 6 PNS heifer calves and 8 Control heifer calves at 28 d and 5 yr of age. The DNA methylation data were generated through Reduced Representation Bisulfite Sequencing. Based on results of mapping and bioinformatics analyses, 73,758 hypermethylated and 73,367 hypomethylated CpG sites, 375 hypermethylated and 377 hypomethylated CHG sites, 735 hypermethylated and 842 hypomethylated CHH (C = cytosine; G = guanine; H = either adenine, thymine, or cytosine) sites were obtained from 28-d-old PNS calves compared to when they had matured into 5-yr-old PNS cows (P ≤ 0.05). The 28-d-old Control heifer calves contained 53,005 hypermethylated and 57,103 hypomethylated CpG sites, 200 hypermethylated and 202 hypomethylated CHG sites, 439 hypermethylated and 535 hypomethylated CHH sites compared to when they matured into 5-yr-old Control cows (P ≤ 0.05). As DNA methylation of gene promoter regions is associated with reduced transcription activity, strongly hypermethylated and hypomethylated CpG sites located in promoter regions underwent Ingenuity Pathway Analysis. The top canonical pathways altered by strongly hypermethylated and hypomethylated CpG sites between 28-d-old and 5-yr-old PNS cows were 4-1BB Signaling in T Lymphocytes (P = 0.00169) and Transcriptional Regulatory Network in Embryonic Stem Cells (P = 0.000744). Mineralocorticoid Biosynthesis (P = 0.00901) and Transcriptional Regulatory Network in Embryonic Stem Cells (P = 0.000804) were the other top canonical pathways altered between 28-d-old and 5-yr-old Control cows. PNS calves appeared to develop an altered epigenome compared to Control group calves during the first five yr from birth.


2004 ◽  
Vol 22 (22) ◽  
pp. 4632-4642 ◽  
Author(s):  
Partha M. Das ◽  
Rakesh Singal

DNA methylation is an important regulator of gene transcription, and its role in carcinogenesis has been a topic of considerable interest in the last few years. Alterations in DNA methylation are common in a variety of tumors as well as in development. Of all epigenetic modifications, hypermethylation, which represses transcription of the promoter regions of tumor suppressor genes leading to gene silencing, has been most extensively studied. However, global hypomethylation has also been recognized as a cause of oncogenesis. New information concerning the mechanism of methylation and its control has led to the discovery of many regulatory proteins and enzymes. The contribution of dietary folate and methylene terahydrofolate reductase polymorphisms to methylation patterns in normal and cancer tissues is under intense investigation. As methylation occurs early and can be detected in body fluids, it may be of potential use in early detection of tumors and for determining the prognosis. Because DNA methylation is reversible, drugs like 5′-azacytidine, decitabine, and histone deacetylase inhibitors are being used to treat a variety of tumors. Novel demethylating agents such as antisense DNA methyl transferase and small interference RNA are being developed, making the field of DNA methylation wider and more exciting.


2003 ◽  
Vol 81 (3) ◽  
pp. 197-208 ◽  
Author(s):  
Giuseppe Zardo ◽  
Anna Reale ◽  
Giovanna De Matteis ◽  
Serena Buontempo ◽  
Paola Caiafa

The aberrant DNA methylation of promoter regions of housekeeping genes leads to gene silencing. Additional epigenetic events, such as histone methylation and acetylation, also play a very important role in the definitive repression of gene expression by DNA methylation. If the aberrant DNA methylation of promoter regions is the starting or the secondary event leading to the gene silencing is still debated. Mechanisms controlling DNA methylation patterns do exist although they have not been ultimately proven. Our data suggest that poly(ADP-ribosyl)ation might be part of this control mechanism. Thus an additional epigenetic modification seems to be involved in maintaining tissue and cell-type methylation patterns that when formed during embryo development, have to be rigorously conserved in adult organisms.Key words: DNA methylation, chromatin, poly(ADP-ribosyl)ation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 653-653 ◽  
Author(s):  
Ying Qu ◽  
Andreas Lennartsson ◽  
Verena I. Gaidzik ◽  
Stefan Deneberg ◽  
Sofia Bengtzén ◽  
...  

Abstract Abstract 653 DNA methylation is involved in multiple biologic processes including normal cell differentiation and tumorigenesis. In AML, methylation patterns have been shown to differ significantly from normal hematopoietic cells. Most studies of DNA methylation in AML have previously focused on CpG islands within the promoter of genes, representing only a very small proportion of the DNA methylome. In this study, we performed genome-wide methylation analysis of 62 AML patients with CN-AML and CD34 positive cells from healthy controls by Illumina HumanMethylation450K Array covering 450.000 CpG sites in CpG islands as well as genomic regions far from CpG islands. Differentially methylated CpG sites (DMS) between CN-AML and normal hematopoietic cells were calculated and the most significant enrichment of DMS was found in regions more than 4kb from CpG Islands, in the so called open sea where hypomethylation was the dominant form of aberrant methylation. In contrast, CpG islands were not enriched for DMS and DMS in CpG islands were dominated by hypermethylation. DMS successively further away from CpG islands in CpG island shores (up to 2kb from CpG Island) and shelves (from 2kb to 4kb from Island) showed increasing degree of hypomethylation in AML cells. Among regions defined by their relation to gene structures, CpG dinucleotide located in theoretic enhancers were found to be the most enriched for DMS (Chi χ2<0.0001) with the majority of DMS showing decreased methylation compared to CD34 normal controls. To address the relation to gene expression, GEP (gene expression profiling) by microarray was carried out on 32 of the CN-AML patients. Totally, 339723 CpG sites covering 18879 genes were addressed on both platforms. CpG methylation in CpG islands showed the most pronounced anti-correlation (spearman ρ =-0.4145) with gene expression level, followed by CpG island shores (mean spearman rho for both sides' shore ρ=-0.2350). As transcription factors (TFs) have shown to be crucial for AML development, we especially studied differential methylation of an unbiased selection of 1638 TFs. The most enriched differential methylation between CN-AML and normal CD34 positive cells were found in TFs known to be involved in hematopoiesis and with Wilms tumor protein-1 (WT1), activator protein 1 (AP-1) and runt-related transcription factor 1 (RUNX1) being the most differentially methylated TFs. The differential methylation in WT 1 and RUNX1 was located in intragenic regions which were confirmed by pyro-sequencing. AML cases were characterized with respect to mutations in FLT3, NPM1, IDH1, IDH2 and DNMT3A. Correlation analysis between genome wide methylation patterns and mutational status showed statistically significant hypomethylation of CpG Island (p<0.0001) and to a lesser extent CpG island shores (p<0.001) and the presence of DNMT3A mutations. This links DNMT3A mutations for the first time to a hypomethylated phenotype. Further analyses correlating methylation patterns to other clinical data such as clinical outcome are ongoing. In conclusion, our study revealed that non-CpG island regions and in particular enhancers are the most aberrantly methylated genomic regions in AML and that WT 1 and RUNX1 are the most differentially methylated TFs. Furthermore, our data suggests a hypomethylated phenotype in DNMT3A mutated AML. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document