scholarly journals A single-cell genomic strategy for alternative transcript start sites identification

2021 ◽  
Author(s):  
Yanling Peng ◽  
Qitong Huang ◽  
Rui Kamada ◽  
Keiko Ozato ◽  
Yubo Zhang ◽  
...  

Alternative transcription start sites (TSSs) usage plays a critical role in gene transcription regulation in mammals. However, precisely identifying alternative TSSs remains challenging at the genome-wide level. Here, we report a single-cell genomic technology for alternative TSSs annotation and cell heterogeneity detection. In the method, we utilize Fluidigm C1 system to capture individual cells of interest, SMARTer cDNA synthesis kit to recover full-length cDNAs, then dual priming oligonucleotide system to specifically enrich TSSs for genomic analysis. We apply this method to a genome-wide study of alternative TSSs identification in two different IFN-β stimulated mouse embryonic fibroblasts (MEFs). We quantify the performance of our method and find it as accurate as other single cell methods for the detection of TSSs. Our data are also clearly discriminate two IFN-β stimulated MEFs. Moreover, our results indicate 82% expressed genes in these two cell types containing multiple TSSs, which is much higher than previous predictions based on CAGE (58%) or empirical determination (54%) in various cell types. This indicates that alternative TSSs are more pervasive than expected and implies our strategy could position them at an unprecedented sensitivity. It would be helpful for elucidating their biological insights in future.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cuili Pan ◽  
Zhaoxiong Lei ◽  
Shuzhe Wang ◽  
Xingping Wang ◽  
Dawei Wei ◽  
...  

Abstract Background Cyclin-dependent kinases (CDKs) are protein kinases regulating important cellular processes such as cell cycle and transcription. Many CDK genes also play a critical role during adipogenic differentiation, but the role of CDK gene family in regulating bovine adipocyte differentiation has not been studied. Therefore, the present study aims to characterize the CDK gene family in bovine and study their expression pattern during adipocyte differentiation. Results We performed a genome-wide analysis and identified a number of CDK genes in several bovine species. The CDK genes were classified into 8 subfamilies through phylogenetic analysis. We found that 25 bovine CDK genes were distributed in 16 different chromosomes. Collinearity analysis revealed that the CDK gene family in Bos taurus is homologous with Bos indicus, Hybrid-Bos taurus, Hybrid Bos indicus, Bos grunniens and Bubalus bubalis. Several CDK genes had higher expression levels in preadipocytes than in differentiated adipocytes, as shown by RNA-seq analysis and qPCR, suggesting a role in the growth of emerging lipid droplets. Conclusion In this research, 185 CDK genes were identified and grouped into eight distinct clades in Bovidae, showing extensively homology. Global expression analysis of different bovine tissues and specific expression analysis during adipocytes differentiation revealed CDK4, CDK7, CDK8, CDK9 and CDK14 may be involved in bovine adipocyte differentiation. The results provide a basis for further study to determine the roles of CDK gene family in regulating adipocyte differentiation, which is beneficial for beef quality improvement.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 888
Author(s):  
Xuejiao Jin ◽  
Jie Zhang ◽  
Tingting An ◽  
Huihui Zhao ◽  
Wenhao Fu ◽  
...  

Lithium hexafluorophosphate (LiPF6) is one of the leading electrolytes in lithium-ion batteries, and its usage has increased tremendously in the past few years. Little is known, however, about its potential environmental and biological impacts. In order to improve our understanding of the cytotoxicity of LiPF6 and the specific cellular response mechanisms to it, we performed a genome-wide screen using a yeast (Saccharomyces cerevisiae) deletion mutant collection and identified 75 gene deletion mutants that showed LiPF6 sensitivity. Among these, genes associated with mitochondria showed the most enrichment. We also found that LiPF6 is more toxic to yeast than lithium chloride (LiCl) or sodium hexafluorophosphate (NaPF6). Physiological analysis showed that a high concentration of LiPF6 caused mitochondrial damage, reactive oxygen species (ROS) accumulation, and ATP content changes. Compared with the results of previous genome-wide screening for LiCl-sensitive mutants, we found that oxidative phosphorylation-related mutants were specifically hypersensitive to LiPF6. In these deletion mutants, LiPF6 treatment resulted in higher ROS production and reduced ATP levels, suggesting that oxidative phosphorylation-related genes were important for counteracting LiPF6-induced toxicity. Taken together, our results identified genes specifically involved in LiPF6-modulated toxicity, and demonstrated that oxidative stress and ATP imbalance maybe the driving factors in governing LiPF6-induced toxicity.


Author(s):  
Yunkai Zhu ◽  
Fei Feng ◽  
Gaowei Hu ◽  
Yuyan Wang ◽  
Yin Yu ◽  
...  

SUMMARYThe global spread of SARS-CoV-2 is posing major public health challenges. One unique feature of SARS-CoV-2 spike protein is the insertion of multi-basic residues at the S1/S2 subunit cleavage site, the function of which remains uncertain. We found that the virus with intact spike (Sfull) preferentially enters cells via fusion at the plasma membrane, whereas a clone (Sdel) with deletion disrupting the multi-basic S1/S2 site instead utilizes a less efficient endosomal entry pathway. This idea was supported by the identification of a suite of endosomal entry factors specific to Sdel virus by a genome-wide CRISPR-Cas9 screen. A panel of host factors regulating the surface expression of ACE2 was identified for both viruses. Using a hamster model, animal-to-animal transmission with the Sdel virus was almost completely abrogated, unlike with Sfull. These findings highlight the critical role of the S1/S2 boundary of the SARS-CoV-2 spike protein in modulating virus entry and transmission.


2020 ◽  
Author(s):  
Ximena Contreras ◽  
Amarbayasgalan Davaatseren ◽  
Nicole Amberg ◽  
Andi H. Hansen ◽  
Johanna Sonntag ◽  
...  

2021 ◽  
Author(s):  
Xinxin Yi ◽  
Jing Liu ◽  
Shengcai Chen ◽  
Hao Wu ◽  
Min Liu ◽  
...  

Cultivated soybean (Glycine max) is an important source for protein and oil. Many elite cultivars with different traits have been developed for different conditions. Each soybean strain has its own genetic diversity, and the availability of more high-quality soybean genomes can enhance comparative genomic analysis for identifying genetic underpinnings for its unique traits. In this study, we constructed a high-quality de novo assembly of an elite soybean cultivar Jidou 17 (JD17) with chromsome contiguity and high accuracy. We annotated 52,840 gene models and reconstructed 74,054 high-quality full-length transcripts. We performed a genome-wide comparative analysis based on the reference genome of JD17 with three published soybeans (WM82, ZH13 and W05) , which identified five large inversions and two large translocations specific to JD17, 20,984 - 46,912 PAVs spanning 13.1 - 46.9 Mb in size, and 5 - 53 large PAV clusters larger than 500kb. 1,695,741 - 3,664,629 SNPs and 446,689 - 800,489 Indels were identified and annotated between JD17 and them. Symbiotic nitrogen fixation (SNF) genes were identified and the effects from these variants were further evaluated. It was found that the coding sequences of 9 nitrogen fixation-related genes were greatly affected. The high-quality genome assembly of JD17 can serve as a valuable reference for soybean functional genomics research.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Youjin Hu ◽  
Jiawei Zhong ◽  
Yuhua Xiao ◽  
Zheng Xing ◽  
Katherine Sheu ◽  
...  

Abstract The differences in transcription start sites (TSS) and transcription end sites (TES) among gene isoforms can affect the stability, localization, and translation efficiency of mRNA. Gene isoforms allow a single gene diverse functions across different cell types, and isoform dynamics allow different functions over time. However, methods to efficiently identify and quantify RNA isoforms genome-wide in single cells are still lacking. Here, we introduce single cell RNA Cap And Tail sequencing (scRCAT-seq), a method to demarcate the boundaries of isoforms based on short-read sequencing, with higher efficiency and lower cost than existing long-read sequencing methods. In conjunction with machine learning algorithms, scRCAT-seq demarcates RNA transcripts with unprecedented accuracy. We identified hundreds of previously uncharacterized transcripts and thousands of alternative transcripts for known genes, revealed cell-type specific isoforms for various cell types across different species, and generated a cell atlas of isoform dynamics during the development of retinal cones.


Science ◽  
2008 ◽  
Vol 322 (5909) ◽  
pp. 1855-1857 ◽  
Author(s):  
Yiping He ◽  
Bert Vogelstein ◽  
Victor E. Velculescu ◽  
Nickolas Papadopoulos ◽  
Kenneth W. Kinzler

Transcription in mammalian cells can be assessed at a genome-wide level, but it has been difficult to reliably determine whether individual transcripts are derived from the plus or minus strands of chromosomes. This distinction can be critical for understanding the relationship between known transcripts (sense) and the complementary antisense transcripts that may regulate them. Here, we describe a technique that can be used to (i) identify the DNA strand of origin for any particular RNA transcript, and (ii) quantify the number of sense and antisense transcripts from expressed genes at a global level. We examined five different human cell types and in each case found evidence for antisense transcripts in 2900 to 6400 human genes. The distribution of antisense transcripts was distinct from that of sense transcripts, was nonrandom across the genome, and differed among cell types. Antisense transcripts thus appear to be a pervasive feature of human cells, which suggests that they are a fundamental component of gene regulation.


2009 ◽  
Vol 106 (51) ◽  
pp. 21883-21888 ◽  
Author(s):  
J. E. McLaughlin ◽  
M. A. Bin-Umer ◽  
A. Tortora ◽  
N. Mendez ◽  
S. McCormick ◽  
...  

2018 ◽  
Author(s):  
Sanju Sinha ◽  
Karina Barbosa Guerra ◽  
Kuoyuan Cheng ◽  
Mark DM Leiserson ◽  
David M Wilson ◽  
...  

AbstractRecent studies have reported that CRISPR-Cas9 gene editing induces a p53-dependent DNA damage response in primary cells, which may select for cells with oncogenic p53 mutations11,12. It is unclear whether these CRISPR-induced changes are applicable to different cell types, and whether CRISPR gene editing may select for other oncogenic mutations. Addressing these questions, we analyzed genome-wide CRISPR and RNAi screens to systematically chart the mutation selection potential of CRISPR knockouts across the whole exome. Our analysis suggests that CRISPR gene editing can select for mutants of KRAS and VHL, at a level comparable to that reported for p53. These predictions were further validated in a genome-wide manner by analyzing independent CRISPR screens and patients’ tumor data. Finally, we performed a new set of pooled and arrayed CRISPR screens to evaluate the competition between CRISPR-edited isogenic p53 WT and mutant cell lines, which further validated our predictions. In summary, our study systematically charts and points to the potential selection of specific cancer driver mutations during CRISPR-Cas9 gene editing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhe Cui ◽  
Ya Cui ◽  
Yan Gao ◽  
Tao Jiang ◽  
Tianyi Zang ◽  
...  

Single-cell Assay Transposase Accessible Chromatin sequencing (scATAC-seq) has been widely used in profiling genome-wide chromatin accessibility in thousands of individual cells. However, compared with single-cell RNA-seq, the peaks of scATAC-seq are much sparser due to the lower copy numbers (diploid in humans) and the inherent missing signals, which makes it more challenging to classify cell type based on specific expressed gene or other canonical markers. Here, we present svmATAC, a support vector machine (SVM)-based method for accurately identifying cell types in scATAC-seq datasets by enhancing peak signal strength and imputing signals through patterns of co-accessibility. We applied svmATAC to several scATAC-seq data from human immune cells, human hematopoietic system cells, and peripheral blood mononuclear cells. The benchmark results showed that svmATAC is free of literature-based markers and robust across datasets in different libraries and platforms. The source code of svmATAC is available at https://github.com/mrcuizhe/svmATAC under the MIT license.


Sign in / Sign up

Export Citation Format

Share Document