scholarly journals Developmental resilience of synaptome architecture

2021 ◽  
Author(s):  
Laura Tomas-Roca ◽  
Zhen Qiu ◽  
Erik Fransen ◽  
Ragini Gokhale ◽  
Edita Bulovaite ◽  
...  

Neurodevelopmental disorders of genetic origin delay the acquisition of normal abilities and cause disabling phenotypes. Spontaneous attenuation and even complete amelioration of symptoms in early childhood and adolescence occur in many disorders, suggesting that brain circuits possess an intrinsic capacity to repair themselves. We examined the molecular composition of almost a trillion excitatory synapses on a brain-wide scale between birth and adulthood in mice carrying a mutation in the homeobox transcription factor Pax6, a neurodevelopmental disorder model. Pax6 haploinsufficiency had no impact on total synapse number at any age. By contrast, the postnatal expansion of synapse diversity and acquisition of normal synaptome architecture were delayed in all brain regions, interfering with network and cognitive functions. Specific excitatory synapse types and subtypes were affected in two key developmental age-windows. These phenotypes were reversed within 2-3 weeks of onset, restoring synaptome architecture to its normal developmental trajectory. Synapse subtypes with high rates of protein turnover mediated these events. These results show synaptome remodelling confers resilience to neurodevelopmental disorders.

2021 ◽  
Vol 12 ◽  
Author(s):  
Wenbin Pang ◽  
Xinan Yi ◽  
Ling Li ◽  
Liyan Liu ◽  
Wei Xiang ◽  
...  

Neurodevelopmental disorders are psychiatric diseases that are usually first diagnosed in infancy, childhood and adolescence. Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by core symptoms including impaired social communication, cognitive rigidity and repetitive behavior, accompanied by a wide range of comorbidities such as intellectual disability (ID) and dysmorphisms. While the cause remains largely unknown, genetic, epigenetic, and environmental factors are believed to contribute toward the onset of the disease. Autism Susceptibility Candidate 2 (Auts2) is a gene highly associated with ID and ASD. Therefore, understanding the function of Auts2 gene can provide a unique entry point to untangle the complex neuronal phenotypes of neurodevelpmental disorders. In this review, we discuss the recent discoveries regarding the molecular and cellular functions of Auts2. Auts2 was shown to be a key-regulator of transcriptional network and a mediator of epigenetic regulation in neurodevelopment, the latter potentially providing a link for the neuronal changes of ASD upon environmental risk-factor exposure. In addition, Auts2 could synchronize the balance between excitation and inhibition through regulating the number of excitatory synapses. Cytoplasmic Auts2 could join the fine-tuning of actin dynamics during neuronal migration and neuritogenesis. Furthermore, Auts2 was expressed in developing mouse and human brain regions such as the frontal cortex, dorsal thalamus, and hippocampus, which have been implicated in the impaired cognitive and social function of ASD. Taken together, a comprehensive understanding of Auts2 functions can give deep insights into the cause of the heterogenous manifestation of neurodevelopmental disorders such as ASD.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2024
Author(s):  
Valentina Bieneck ◽  
Anke Bletsch ◽  
Caroline Mann ◽  
Tim Schäfer ◽  
Hanna Seelemeyer ◽  
...  

The neuroanatomy of autism spectrum disorder (ASD) shows highly heterogeneous developmental trajectories across individuals. Mapping atypical brain development onto clinical phenotypes, and establishing their molecular underpinnings, is therefore crucial for patient stratification and subtyping. In this longitudinal study we examined intra- and inter-individual differences in the developmental trajectory of cortical thickness (CT) in childhood and adolescence, and their genomic underpinnings, in 33 individuals with ASD and 37 typically developing controls (aged 11–18 years). Moreover, we aimed to link regional atypical CT development to intra-individual variations in restricted and repetitive behavior (RRB) over a two-year time period. Individuals with ASD showed significantly reduced cortical thinning in several of the brain regions functionally related to wider autism symptoms and traits (e.g., fronto-temporal and cingulate cortices). The spatial patterns of the neuroanatomical differences in CT were enriched for genes known to be associated with ASD at a genetic and transcriptomic level. Further, intra-individual differences in CT correlated with within-subject variability in the severity of RRBs. Our findings represent an important step towards characterizing the neuroanatomical underpinnings of ASD across development based upon measures of CT. Moreover, our findings provide important novel insights into the link between microscopic and macroscopic pathology in ASD, as well as their relationship with different clinical ASD phenotypes.


Author(s):  
M. C. Whitehead

A fundamental problem in taste research is to determine how gustatory signals are processed and disseminated in the mammalian central nervous system. An important first step toward understanding information processing is the identification of cell types in the nucleus of the solitary tract (NST) and their synaptic relationships with oral primary afferent terminals. Facial and glossopharyngeal (LIX) terminals in the hamster were labelled with HRP, examined with EM, and characterized as containing moderate concentrations of medium-sized round vesicles, and engaging in asymmetrical synaptic junctions. Ultrastructurally the endings resemble excitatory synapses in other brain regions.Labelled facial afferent endings in the RC subdivision synapse almost exclusively with distal dendrites and dendritic spines of NST cells. Most synaptic relationships between the facial synapses and the dendrites are simple. However, 40% of facial endings engage in complex synaptic relationships within glomeruli containing unlabelled axon endings particularly ones termed "SP" endings. SP endings are densely packed with small, pleomorphic vesicles and synapse with both the facial endings and their postsynaptic dendrites by means of nearly symmetrical junctions.


2020 ◽  
Vol 27 (40) ◽  
pp. 6771-6786
Author(s):  
Geir Bjørklund ◽  
Nagwa Abdel Meguid ◽  
Maryam Dadar ◽  
Lyudmila Pivina ◽  
Joanna Kałużna-Czaplińska ◽  
...  

As a major neurodevelopmental disorder, Autism Spectrum Disorder (ASD) encompasses deficits in communication and repetitive and restricted interests or behaviors in childhood and adolescence. Its etiology may come from either a genetic, epigenetic, neurological, hormonal, or an environmental cause, generating pathways that often altogether play a synergistic role in the development of ASD pathogenesis. Furthermore, the metabolic origin of ASD should be important as well. A balanced diet consisting of the essential and special nutrients, alongside the recommended caloric intake, is highly recommended to promote growth and development that withstand the physiologic and behavioral challenges experienced by ASD children. In this review paper, we evaluated many studies that show a relationship between ASD and diet to develop a better understanding of the specific effects of the overall diet and the individual nutrients required for this population. This review will add a comprehensive update of knowledge in the field and shed light on the possible nutritional deficiencies, metabolic impairments (particularly in the gut microbiome), and malnutrition in individuals with ASD, which should be recognized in order to maintain the improved socio-behavioral habit and physical health.


2021 ◽  
Vol 7 (11) ◽  
pp. eaba1187
Author(s):  
Rina Baba ◽  
Satoru Matsuda ◽  
Yuuichi Arakawa ◽  
Ryuji Yamada ◽  
Noriko Suzuki ◽  
...  

Persistent epigenetic dysregulation may underlie the pathophysiology of neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here, we show that the inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity normalizes aberrant epigenetic control of gene expression in neurodevelopmental disorders. Maternal exposure to valproate or poly I:C caused sustained dysregulation of gene expression in the brain and ASD-like social and cognitive deficits after birth in rodents. Unexpectedly, a specific inhibitor of LSD1 enzyme activity, 5-((1R,2R)-2-((cyclopropylmethyl)amino)cyclopropyl)-N-(tetrahydro-2H-pyran-4-yl)thiophene-3-carboxamide hydrochloride (TAK-418), almost completely normalized the dysregulated gene expression in the brain and ameliorated some ASD-like behaviors in these models. The genes modulated by TAK-418 were almost completely different across the models and their ages. These results suggest that LSD1 enzyme activity may stabilize the aberrant epigenetic machinery in neurodevelopmental disorders, and the inhibition of LSD1 enzyme activity may be the master key to recover gene expression homeostasis. TAK-418 may benefit patients with neurodevelopmental disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph J. Rossi ◽  
Jill A. Rosenfeld ◽  
Katie M. Chan ◽  
Haley Streff ◽  
Victoria Nankivell ◽  
...  

AbstractAberrations in the excitatory/inhibitory balance within the brain have been associated with both intellectual disability (ID) and schizophrenia (SZ). The bHLH-PAS transcription factors NPAS3 and NPAS4 have been implicated in controlling the excitatory/inhibitory balance, and targeted disruption of either gene in mice results in a phenotype resembling ID and SZ. However, there are few human variants in NPAS3 and none in NPAS4 that have been associated with schizophrenia or neurodevelopmental disorders. From a clinical exome sequencing database we identified three NPAS3 variants and four NPAS4 variants that could potentially disrupt protein function in individuals with either developmental delay or ID. The transcriptional activity of the variants when partnered with either ARNT or ARNT2 was assessed by reporter gene activity and it was found that variants which truncated the NPAS3/4 protein resulted in a complete loss of transcriptional activity. The ability of loss-of-function variants to heterodimerise with neuronally enriched partner protein ARNT2 was then determined by co-immunoprecipitation experiments. It was determined that the mechanism for the observed loss of function was the inability of the truncated NPAS3/4 protein to heterodimerise with ARNT2. This further establishes NPAS3 and NPAS4 as candidate neurodevelopmental disorder genes.


1985 ◽  
Vol 30 (2) ◽  
pp. 119-129 ◽  
Author(s):  
B.J. Mcconville ◽  
R.T. Bruce

Considerable progress has been made in our understanding of depressive illnesses in childhood and adolescence, especially over the last several years. A number of major books on the subject have now appeared, along with a large number of individual papers. This paper attempts to summarize current knowledge, and indicates developmental, age-related and other issues which still require further study.


2020 ◽  
Author(s):  
Xin Niu ◽  
Alexei Taylor ◽  
Russell T. Shinohara ◽  
John Kounios ◽  
Fengqing Zhang

AbstractBrain regions change in different ways and at different rates. This staggered developmental unfolding is determined by genetics and postnatal experience and is implicated in the progression of psychiatric and neurological disorders. Neuroimaging-based brain-age prediction has emerged as an important new approach for studying brain development. However, the unidimensional brain-age estimates provided by previous methods do not capture the divergent developmental trajectories of various brain structures. Here we propose and illustrate an analytic pipeline to compute an index of multidimensional brain-age that provides regional age predictions. First, using a database of 556 subjects that includes psychiatric and neurological patients as well as healthy controls we conducted robust regression to characterize the developmental trajectory of each MRI-based brain-imaging feature. We then utilized cluster analysis to identify subgroups of imaging features with a similar developmental trajectory. For each identified cluster, we obtained a brain-age prediction by applying machine-learning models with imaging features belonging to each cluster. Brain-age predictions from multiple clusters form a multidimensional brain-age index (MBAI). The MBAI is more sensitive to alterations in brain structures and captured distinct regional change patterns. In particular, the MBAI provided a more flexible analysis of brain age across brain regions that revealed changes in specific structures in psychiatric disorders that would otherwise have been combined in a unidimensional brain age prediction. More generally, brain-age prediction using a subset of homogeneous features circumvents the curse of dimensionality in neuroimaging data.


2018 ◽  
Author(s):  
Bernard Friedenson

AbstractThe purpose of this study was to understand the role of infection in the origin of chromosomal anomalies linked to neurodevelopmental disorders. In children with disorders in the development of their nervous systems, chromosome anomalies known to cause these disorders were compared to viruses and bacteria including known teratogens. Results support the explanation that parental infections disrupt elaborate multi-system gene coordination needed for neurodevelopment. Genes essential for neurons, lymphatic drainage, immunity, circulation, angiogenesis, cell barriers, structure, and chromatin activity were all found close together in polyfunctional clusters that were deleted in neurodevelopmental disorders. These deletions account for immune, circulatory, and structural deficits that accompany neurologic deficits. In deleted gene clusters, specific and repetitive human DNA matched infections and passed rigorous artifact tests. In some patients, epigenetic driver mutations were found and may be functionally equivalent to deleting a cluster or changing topologic chromatin interactions because they change access to large chromosome segments. In three families, deleted DNA sequences were associated with intellectual deficits and were not included in any database of genomic variants. These sequences were thousands of bp and unequivocally matched foreign DNAs. Analogous homologies were also found in chromosome anomalies of a recurrent neurodevelopmental disorder. Viral and bacterial DNAs that match repetitive or specific human DNA segments are thus proposed to interfere with highly active break repair during meiosis; sometimes delete polyfunctional clusters, and disable epigenetic drivers. Mis-repaired gametes produce zygotes containing rare chromosome anomalies which cause neurologic disorders and accompanying non-neurologic signs. Neurodevelopmental disorders may be examples of assault on the human genome by foreign DNA with some infections more likely tolerated because they resemble human DNA segments. Further tests of this model await new technology.Graphic Abstract


2021 ◽  
Author(s):  
Pavithra Elumalai ◽  
Yasharth Yadav ◽  
Nitin Williams ◽  
Emil Saucan ◽  
Jürgen Jost ◽  
...  

Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders that pose a significant global health burden. Measures from graph theory have been used to characterise ASD-related changes in resting-state fMRI functional connectivity networks (FCNs), but recently developed geometry-inspired measures have not been applied so far. In this study, we applied geometry-inspired graph Ricci curvatures to investigate ASD-related changes in resting-state fMRI FCNs. To do this, we applied Forman-Ricci and Ollivier-Ricci curvatures to compare networks of ASD and healthy controls (N = 1112) from the Autism Brain Imaging Data Exchange I (ABIDE-I) dataset. We performed these comparisons at the brain-wide level as well as at the level of individual brain regions, and further, determined the behavioral relevance of region-specific differences with Neurosynth meta-analysis decoding. We found brain-wide ASD-related differences for both Forman-Ricci and Ollivier-Ricci curvatures. For Forman-Ricci curvature, these differences were distributed across 83 of the 200 brain regions studied, and concentrated within the Default Mode, Somatomotor and Ventral Attention Network. Meta-analysis decoding identified the brain regions showing curvature differences as involved in social cognition, memory, language and movement. Notably, comparison with results from previous non-invasive stimulation (TMS/tDCS) experiments revealed that the set of brain regions showing curvature differences overlapped with the set of brain regions whose stimulation resulted in positive cognitive or behavioural outcomes in ASD patients. These results underscore the utility of geometry-inspired graph Ricci curvatures in characterising disease-related changes in ASD, and possibly, other neurodevelopmental disorders.


Sign in / Sign up

Export Citation Format

Share Document