scholarly journals IL4I1 binds to TMPRSS13 and competes with SARS-Cov2 Spike

2021 ◽  
Author(s):  
Jérôme Gatineau ◽  
Charlotte Nidercorne ◽  
Aurélie Dupont ◽  
Marie-Line Puiffe ◽  
José L Cohen ◽  
...  

The secreted enzyme interleukin four-induced gene 1 (IL4I1) is involved in the negative control of the adaptive immune response. IL4I1 expression in human cancer is frequent and correlates with poor survival and resistance to immunotherapy. Nevertheless, its mechanism of action remains partially unknown. Here, we identified transmembrane serine protease 13 (TMPRSS13) as an immune cell-expressed surface protein that binds IL4I1. TMPRSS13 is a paralog of TMPRSS2, whose protease activity participates in the cleavage of SARS-Cov2 Spike protein and facilitates virus induced-membrane fusion. We show that TMPRSS13 is expressed by human lymphocytes, monocytes and monocyte-derived macrophages, can cleave the Spike protein and allow Sars-Cov2 Spike pseudotyped virus entry into cells. We identify regions of homology between IL4I1 and Spike and demonstrate competition between the two proteins for TMPRSS13 binding. These findings may be relevant for both interfering with SARS-Cov2 infection and limiting IL4I1-dependent immunosuppressive activity in cancer.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marta Ferreira-Gomes ◽  
Andrey Kruglov ◽  
Pawel Durek ◽  
Frederik Heinrich ◽  
Caroline Tizian ◽  
...  

AbstractThe pathogenesis of severe COVID-19 reflects an inefficient immune reaction to SARS-CoV-2. Here we analyze, at the single cell level, plasmablasts egressed into the blood to study the dynamics of adaptive immune response in COVID-19 patients requiring intensive care. Before seroconversion in response to SARS-CoV-2 spike protein, peripheral plasmablasts display a type 1 interferon-induced gene expression signature; however, following seroconversion, plasmablasts lose this signature, express instead gene signatures induced by IL-21 and TGF-β, and produce mostly IgG1 and IgA1. In the sustained immune reaction from COVID-19 patients, plasmablasts shift to the expression of IgA2, thereby reflecting an instruction by TGF-β. Despite their continued presence in the blood, plasmablasts are not found in the lungs of deceased COVID-19 patients, nor does patient IgA2 binds to the dominant antigens of SARS-CoV-2. Our results thus suggest that, in severe COVID-19, SARS-CoV-2 triggers a chronic immune reaction that is instructed by TGF-β, and is distracted from itself.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A758-A758
Author(s):  
Duong Nguyen ◽  
Alberto Gomez ◽  
Forrest Neuharth ◽  
Ashley Alamillo ◽  
Thomas Herrmann ◽  
...  

BackgroundOncolytic virotherapy has been recognized as a promising new therapy for cancer for decades but only few viruses have been approved worldwide. The therapeutic potential of oncolytic viruses can be severely restricted by innate and adaptive immune barriers making oncolytic virus clinically inefficient. To overcome this obstacle, we utilized adipose-derived stem cells (AD-MSC) loaded with tumor selective CAL1 oncolytic vaccinia virus to generate a new therapeutic agent called SNV1 (SuperNova-1).MethodsCAL1 vaccinia virus was tested for its ability to replicate and selectively kill various human cancer cell lines in vitro and in vivo. Additionally, CAL1 was loaded into adipose-derived mesenchymal stem cells to generate SuperNova1 (SNV1). Both CAL1 and SNV1 were tested for their ability to kill cancer cells in the presence of active complement and neutralizing antibodies in cell culture as well as in mice. Immune cell infiltration of the treated and untreated tumors was analyzed by flow cytometry.ResultsCAL1 showed preferential amplification and killed various tested human (PC3, FaDu, MDA-MB-231, RPMI) and mouse cancer cells (CT26, EMT6, TRAMP-C2, RM1). In animals, CAL1 caused tumor regression in PC3 and CT26 mouse models without signs of toxicity. SNV1 significantly enhanced protection of CAL1 virus from clearance by the immune system as compared to naked CAL1 virus, leading to higher therapeutic efficacy in animals. Five days after SNV1 administration, tumor infiltrating lymphocytes (TILs) from both treated and untreated tumors showed increased CD4 and CD8 T-cell infiltrations. Importantly, we documented a decreased frequency of Tregs, and improved effector to Treg ratios, which was associated with inhibition of tumor growth at the treated tumor site and also at distant untreated sites.ConclusionsCAL1 is potentially used as an oncolytic agent. In addition, SNV1 cell-based platform protects and potentiates oncolytic vaccinia virus by circumventing humoral innate and adaptive immune barriers, resulting in enhanced oncolytic virotherapy. Particularly, SNV1 provided instantly active viral particles for immediate infection and simultaneous release of therapeutic proteins in the injected tumors.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3037-3037 ◽  
Author(s):  
Jakub Krejcik ◽  
Tineke Casneuf ◽  
Inger Nijhof ◽  
Bie Verbist ◽  
Jaime Bald ◽  
...  

Abstract Introduction: Daratumumab (DARA) is a novel human monoclonal antibody that targets CD38, a protein that is highly expressed on multiple myeloma (MM) cells. DARA acts through multiple immune effector-mediated mechanisms, including complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis. In two clinical studies (NCT00574288 [GEN501] and NCT01985126 [Sirius]) of DARA monotherapy in patients with relapsed and refractory MM, overall response rates were 36% and 29%, respectively. CD38 is highly expressed in myeloma cells but also expressed in lymphocytes and other immune cell populations. Therefore, the effects of DARA on immune cell populations and adaptive immune response pathways were investigated. Methods: The patient population investigated included treated subjects with MM that were relapsed after or were refractory to ≥2 prior therapies (GEN501) or had received ≥3 prior therapies, including a proteasome inhibitor (PI) and an immunomodulatory drug (IMiD), or were refractory to both a PI and an IMiD (Sirius). Patients assessed in this analysis were treated with 16 mg/kg DARA. When both studies were combined, median age (range) was 64 (31-84) years and median time from diagnosis was 5.12 (0.77-23.77) years. Seventy-six percent of patients had received >3 prior therapies and 91% were refractory to their last treatment. Clinical response was evaluated using IMWG consensus recommendations. Peripheral blood (PB) samples and bone marrow (BM) biopsies/aspirates were taken at prespecified time points and immunophenotyped by flow cytometry to enumerate various T-cell sub-types. T-cell clonality was measured by TCR sequencing. Antiviral T-cell response and regulatory T-cell (Treg) activity were analysed by functional in vitro assays. T-cell subpopulation counts were modelled over time with linear mixed modelling. Two group comparisons were performed using non-parametric Wilcoxon rank sum tests. Results: Data from 148 patients receiving 16 mg/kg DARA in GEN501 (n = 42) and Sirius (n = 106) were analyzed for changes in immune response. In PB, robust mean increases in CD3+ (44%), CD4+ (32%) and CD8+ (62%) T-cell counts per 100 days were seen with DARA treatment. However, responding evaluable patients (n = 45) showed significantly greater increases from baseline than nonresponders (n = 93) in CD3+ (P = 0.00012), CD4+ (P = 0.00031), and CD8+ (P = 0.00018) T cells. In BM aspirates the number of CD3+, CD4+, and CD8+ T-cells increased during treatment compared to baseline (the median percent increases were 19.95%, 5.66%, and 26.99% [n = 58]). Additionally, CD8+: CD4+ T-cell ratios significantly increased compared to baseline in both PB (P = 0.00017), and BM (P = 0.00016). T cell clonality, assessed by TCR sequencing, increased after DARA treatment compared with pretreatment (P = 0.049), with greater sums of absolute expansion in the repertoire (P = 0.037), as well as greater maximum expansion of a single clone (P = 0.048) in responders compared to nonresponders. Increased antiviral T-cell responses were observed post-DARA treatment, particularly in responders. Interestingly, a novel subpopulation of regulatory T cells was identified that expressed high levels of CD38. These cells comprised ~10% of all Tregs and were depleted by one DARA infusion. In ex vivo analyses, CD38+ Tregs appeared to be highly immune suppressive compared to CD38-Tregs. Conclusions: Robust T cell increases, increased CD8+: CD4+ ratios, increased antiviral responses, and increased T cell clonality were all observed after DARA treatment in a heavily pretreated, relapsed, and refractory patient population not expected to have strong immune responses. Improved clinical responses were associated with changes in these parameters. In addition, a sub-population of regulatory T cells expressing high CD38 levels was determined to be extremely immune suppressive and sensitive to DARA treatment. These data suggest a previously unknown immune modulatory role of DARA that may contribute to its efficacy, and a potential role for CD38 immune targeted therapies. We postulate that there are several distinct and complementary mechanisms that contribute to DARA's efficacy including increased antigen presentation through phagocytosis, targeting of immune suppressive Tregs, and increased adaptive immune responses. JK and TC contributed equally to this work. Disclosures Casneuf: Janssen: Employment. Verbist:Janssen: Employment. Bald:Janssen: Employment. Plesner:Genmab: Membership on an entity's Board of Directors or advisory committees; Roche and Novartis: Research Funding; Janssen and Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Liu:Janssen: Employment. van de Donk:Janssen Pharmaceuticals: Research Funding; Amgen: Research Funding; Celgene: Research Funding. Weiss:Janssen and Onclave: Research Funding; Janssen and Millennium: Consultancy. Ahmadi:Janssen: Employment. Lokhorst:Genmab: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Amgen: Honoraria. Mutis:Janssen: Research Funding; Genmab: Research Funding.


Sarcoma ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
William W. Tseng ◽  
Shruti Malu ◽  
Minying Zhang ◽  
Jieqing Chen ◽  
Geok Choo Sim ◽  
...  

Treatment options are limited in well differentiated (WD) and dedifferentiated (DD) retroperitoneal liposarcoma. We sought to study the intratumoral adaptive immune response and explore the potential feasibility of immunotherapy in this disease. Tumor-infiltrating lymphocytes (TILs) were isolated from fresh surgical specimens and analyzed by flow cytometry for surface marker expression. Previously reported immune cell aggregates known as tertiary lymphoid structures (TLS) were further characterized by immunohistochemistry. In all fresh tumors, TILs were found. The majority of TILs were CD4 T cells; however cytotoxic CD8 T cells were also seen (average: 20% of CD3 T cells). Among CD8 T cells, 65% expressed the immune checkpoint molecule PD-1. Intratumoral TLS may be sites of antigen presentation as DC-LAMP positive, mature dendritic cells were found juxtaposed next to CD4 T cells. Clinicopathologic correlation, however, demonstrated that presence of TLS was associated with worse recurrence-free survival in WD disease and worse overall survival in DD disease. Our data suggest that an adaptive immune response is present in WD/DD retroperitoneal liposarcoma but may be hindered by TLS, among other possible microenvironmental factors; further investigation is needed. Immunotherapy, including immune checkpoint blockade, should be evaluated as a treatment option in this disease.


2000 ◽  
Vol 68 (10) ◽  
pp. 6027-6033 ◽  
Author(s):  
M. D. Glew ◽  
Glenn F. Browning ◽  
Philip F. Markham ◽  
Ian D. Walker

ABSTRACT Chickens were infected with a pathogenic strain of Mycoplasma gallisepticum, and the expression of pMGA, the major surface protein, was inferred by examination of colonies from ex vivo cells. Within 2 days postinfection, 40% of cells had ceased the expression of the original pMGA surface protein (pMGA1.1), and by day 6, the majority of recovered cells were in this category. The switch in pMGA phenotype which had occurred in vivo was reversible, since most colonies produced from ex vivo progenitors exhibited frequent pMGA1.1+sectors. After prolonged in vivo habitation, increasing proportions of recovered cells gave rise to variant pMGA colonies which had switched from the expression of pMGA1.1 to another gene, pMGA1.2, concomitant with the acquisition of a (GAA)12 motif 5′ to its promoter. Collectively, the results suggest that changes in M. gallisepticum pMGA gene expression in vivo are normal, common, and possibly obligate events for successful colonization of the host. Surprisingly, the initial cessation of pMGA1.1 expression occurred in the absence of detectable pMGA antibodies and seemed to precede the adaptive immune response.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 260
Author(s):  
Yuling Chen ◽  
Timo Gaber

Oxygen availability varies throughout the human body in health and disease. Under physiological conditions, oxygen availability drops from the lungs over the blood stream towards the different tissues into the cells and the mitochondrial cavities leading to physiological low oxygen conditions or physiological hypoxia in all organs including primary lymphoid organs. Moreover, immune cells travel throughout the body searching for damaged cells and foreign antigens facing a variety of oxygen levels. Consequently, physiological hypoxia impacts immune cell function finally controlling innate and adaptive immune response mainly by transcriptional regulation via hypoxia-inducible factors (HIFs). Under pathophysiological conditions such as found in inflammation, injury, infection, ischemia and cancer, severe hypoxia can alter immune cells leading to dysfunctional immune response finally leading to tissue damage, cancer progression and autoimmunity. Here we summarize the effects of physiological and pathophysiological hypoxia on innate and adaptive immune activity, we provide an overview on the control of immune response by cellular hypoxia-induced pathways with focus on the role of HIFs and discuss the opportunity to target hypoxia-sensitive pathways for the treatment of cancer and autoimmunity.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A654-A654
Author(s):  
Kerry Klussman ◽  
Elena-Marie Tenn ◽  
Shaylin Higgins ◽  
Rebecca Mazahreh ◽  
Katie Snead ◽  
...  

BackgroundEffective cancer treatment requires durable elimination of malignant cells. Cytotoxic chemotherapeutic agents used to treat cancer often show initial anti-tumor efficacy, but fail to produce long-term durable responses in patients. The elicitation of durable responses and improved survival in response to cytotoxic agents may be associated with the induction of innate and adaptive immune response to the cancer. For example, tumor cells undergoing apoptosis following exposure to some cytotoxic agents emit immunostimulatory damage-associated molecular patterns (DAMPs), this form of cell death is termed immunogenic cell death (ICD). ICD can promote the recruitment and activation of both the innate and adaptive immune system, providing an additional mechanism to drive an anti-tumor response.MethodsVedotin-based antibody drug conjugates (ADCs) drive cytotoxicity in tumor cells by engaging tumor antigens on the cell surface, internalizing with the cell surface antigen, and delivering monomethyl auristatin E (MMAE) payload. Following intracellular delivery, MMAE induces mitotic arrest, as well as an endoplasmic reticulum (ER) stress response resulting from microtubule disruption. Following tumor cell treatment, indicators of the ER stress response are observed with vedotin-based ADCs including induction of phospho-JNK and CHOP, This mechanism of MMAE induced ER stress results in emission of hallmark ICD DAMPs including cell-surface calreticulin, extracellular release of HMGB1 and ATP. In this presentation we highlight the ability of MMAE to induce the hallmarks of ICD in multiple cancers across different tissue origins using distinct valine-citrulline-MMAE (vedotin)-based ADCs.ResultsThe culmination of these ICD hallmarks resulted in innate immune cell activation in vitro and in vivo in mouse xenograft models. Tumor bearing mice treated with vedotin-based ADCs resulted in the promotion of immune cell recruitment and activation in tumors. Analysis of immune activation by vedotin-based ADCs included production of innate cytokines and upregulation of HLA/MHC-Class I/II expression, which supports a role in activating both the innate and adaptive immune response. To further our understanding of the potent and broad ability of vedotin ADCs to induce ICD, we have also begun to examine the ICD potential of different classes of ADC payloads including other microtubule inhibitors (auristatins and maytansines), and DNA damaging agents (DNA alkylators or topoisomerase inhibitors). Initial data indicate differences in ICD induction by these agents.ConclusionsThese results help build the rationale for vedotin-based ADCs as preferred partners for immune checkpoint blockade agents.Ethics ApprovalStudies with human samples were performed according to institutional ethics standards. Animal studies were approved by and conducted in accordance with Seattle Genetics Institutional Care and Use Committee protocol #SGE-029.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Xu ◽  
Jianping Jia

The peripheral immune system is thought to affect the pathology of the central nervous system in Alzheimer’s disease (AD). However, current knowledge is inadequate for understanding the characteristics of peripheral immune cells in AD. This study aimed to explore the molecular basis of peripheral immune cells and the features of adaptive immune repertoire at a single cell level. We profiled 36,849 peripheral blood mononuclear cells from AD patients with amyloid-positive status and normal controls with amyloid-negative status by 5’ single-cell transcriptome and immune repertoire sequencing using the cell ranger standard analysis procedure. We revealed five immune cell subsets: CD4+ T cells, CD8+ T cells, B cells, natural killer cells, and monocytes–macrophages cells, and disentangled the characteristic alterations of cell subset proportion and gene expression patterns in AD. Thirty-one cell type-specific key genes, comprising abundant human leukocyte antigen genes, and multiple immune-related pathways were identified by protein–protein interaction network and pathway enrichment analysis. We also found high-frequency amplification clonotypes in T and B cells and decreased diversity in T cells in AD. As clone amplification suggested the activation of an adaptive immune response against specific antigens, we speculated that the peripheral adaptive immune response, especially mediated by T cells, may have a role in the pathogenesis of AD. This finding may also contribute to further research regarding disease mechanism and the development of immune-related biomarkers or therapy.


2005 ◽  
Vol 201 (3) ◽  
pp. 321-323 ◽  
Author(s):  
Jorge E. Galán

Microorganisms that cause persistent infection often exhibit specific adaptations that allow them to avoid the adaptive immune response. Recently, several bacterial toxins have been shown in vitro to disrupt immune cell functions. However, it remains to be established whether these activities are relevant during infection and whether these toxins have specifically evolved to disrupt the adaptive immune system.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Chiara Burgaletto ◽  
Antonio Munafò ◽  
Giulia Di Benedetto ◽  
Cettina De Francisci ◽  
Filippo Caraci ◽  
...  

Abstract Alzheimer’s disease (AD) is the most common form of dementia, characterized by progressive degeneration and loss of neurons in specific regions of the central nervous system. Chronic activation of the immune cells resident in the brain, peripheral immune cell trafficking across the blood-brain barrier, and release of inflammatory and neurotoxic factors, appear critical contributors of the neuroinflammatory response that drives the progression of neurodegenerative processes in AD. As the neuro-immune network is impaired in course of AD, this review is aimed to point out the essential supportive role of innate and adaptive immune response either in normal brain as well as in brain recovery from injury. Since a fine-tuning of the immune response appears crucial to ensure proper nervous system functioning, we focused on the role of the TNF superfamily member, TNF-related apoptosis-inducing ligand (TRAIL), which modulates both the innate and adaptive immune response in the pathogenesis of several immunological disorders and, in particular, in AD-related neuroinflammation. We here summarized mounting evidence of potential involvement of TRAIL signaling in AD pathogenesis, with the aim to provide clearer insights about potential novel therapeutic approaches in AD.


Sign in / Sign up

Export Citation Format

Share Document