scholarly journals Cell-free chromatin particles released from dying cells inflict mitochondrial damage and ROS production in living cells

2021 ◽  
Author(s):  
Bhabesh Kumar Tripathy ◽  
Kartikeya Avadhani ◽  
Raghuram Venkata Gorantla ◽  
Kavita Pal ◽  
Naveen Kumar Khare ◽  
...  

Several hundred billion to a trillion cells die in the body every day and release cell free chromatin particles (cfChPs) which enter into the circulation, or are released locally into extracellular compartments of the body. We have reported that cfChPs from the dying cells can readily enter into living cells and damage their DNA. To test the hypothesis that internalised cfChPs might also inflict mitochondrial damage, we treated NIH3T3 mouse fibroblast cells with cfChPs isolated from sera of healthy individuals (10ng), or co-cultured the cells with hypoxia induced dying NIH3T3 cells. Abundant cfChPs could be detected in the cytoplasm of the treated cells by 4h. The latter was associated with evidence of mitochondrial damage in the form of ultra-structural changes, increased mitochondrial mass, alterations in mitochondrial shape, upregulation of the mitochondrial outer membrane protein TOM20, and changes in mitochondrial membrane potential. We also detected increased fluorescence signals of gamma-H2AX and p-ATM signifying double-strand breaks in mitochondrial DNA. There was marked increase in production of mitochondrial superoxide (ROS) as detected by MitoSOX Red, and activation of the intracellular antioxidant enzyme superoxide dismutase-1. Mitochondrial damage and ROS production could be inhibited by a cfChPs deactivating agent viz. anti-histone antibody complexed nanoparticles. Given that 1x109-1x1012 cells die in the body every day, we propose that cfChPs are major physiological triggers for mitochondrial damage and ROS production with an important bearing on human health and disease. Deactivation of cfChPs may provide a novel therapeutic approach to retard ageing and associated degenerative conditions that have been linked to oxidative stress.

Author(s):  
E.P. Dolgov ◽  
◽  
A.A. Abramov ◽  
E.V. Kuzminova ◽  
E.V. Rogaleva ◽  
...  

The article presents the data on the study of the influence of mycotoxins combination (T-2 toxin at the concentration of 0.095 mg/kg and aflatoxin B1 in the concentration of 0.019 mg/kg) on the body of quails and the results of pharmacocorrection of toxicosis with a complex consisting of beet pulp and lecithin. Structural changes in the intestines of quais at fodder mycotoxicosis are described. The use of antitoxic feed additives in poultry led to a weakening of the action of xenobiotics, which was confirmed by an increase in the safety of poultry and increase in body weight of quails, a decrease in the clinical manifestations of intoxication, as well as in positive changes in the structure of the intestine of the poultry during histological examination.


2020 ◽  
Vol 27 (3) ◽  
pp. 201-209
Author(s):  
Syed Saqib Ali ◽  
Mohammad Khalid Zia ◽  
Tooba Siddiqui ◽  
Haseeb Ahsan ◽  
Fahim Halim Khan

Background: Ascorbic acid is a classic dietary antioxidant which plays an important role in the body of human beings. It is commonly found in various foods as well as taken as dietary supplement. Objective: The plasma ascorbic acid concentration may range from low, as in chronic or acute oxidative stress to high if delivered intravenously during cancer treatment. Sheep alpha-2- macroglobulin (α2M), a human α2M homologue is a large tetrameric glycoprotein of 630 kDa with antiproteinase activity, found in sheep’s blood. Methods: In the present study, the interaction of ascorbic acid with alpha-2-macroglobulin was explored in the presence of visible light by utilizing various spectroscopic techniques and isothermal titration calorimetry (ITC). Results: UV-vis and fluorescence spectroscopy suggests the formation of a complex between ascorbic acid and α2M apparent by increased absorbance and decreased fluorescence. Secondary structural changes in the α2M were investigated by CD and FT-IR spectroscopy. Our findings suggest the induction of subtle conformational changes in α2M induced by ascorbic acid. Thermodynamics signatures of ascorbic acid and α2M interaction indicate that the binding is an enthalpy-driven process. Conclusion: It is possible that ascorbic acid binds and compromises antiproteinase activity of α2M by inducing changes in the secondary structure of the protein.


2021 ◽  
Vol 22 (15) ◽  
pp. 8298
Author(s):  
Hugo Christian Monroy-Ramirez ◽  
Marina Galicia-Moreno ◽  
Ana Sandoval-Rodriguez ◽  
Alejandra Meza-Rios ◽  
Arturo Santos ◽  
...  

Carbohydrates and lipids are two components of the diet that provide the necessary energy to carry out various physiological processes to help maintain homeostasis in the body. However, when the metabolism of both biomolecules is altered, development of various liver diseases takes place; such as metabolic-associated fatty liver diseases (MAFLD), hepatitis B and C virus infections, alcoholic liver disease (ALD), and in more severe cases, hepatocelular carcinoma (HCC). On the other hand, PPARs are a family of ligand-dependent transcription factors with an important role in the regulation of metabolic processes to hepatic level as well as in other organs. After interaction with specific ligands, PPARs are translocated to the nucleus, undergoing structural changes to regulate gene transcription involved in lipid metabolism, adipogenesis, inflammation and metabolic homeostasis. This review aims to provide updated data about PPARs’ critical role in liver metabolic regulation, and their involvement triggering the genesis of several liver diseases. Information is provided about their molecular characteristics, cell signal pathways, and the main pharmacological therapies that modulate their function, currently engaged in the clinic scenario, or in pharmacological development.


1985 ◽  
Vol 110 (3_Suppla) ◽  
pp. S11-S18 ◽  
Author(s):  
H. Kopera

Metabolism is the term employed to embrace the various physical and chemical processes occurring within the tissues upon which the growth and heat production of the body depend and from which the energy for muscular activity, for the maintenance of vital activity and for the maintenance of vital functions is derived (Best & Taylor 1950). The destructive processes by which complex substances are converted by living cells into more simple compounds are called catabolism. Anabolism denotes the constructive processes by which simple substances are converted by living cells into more complex compounds, especially into living matter. Catabolism and anabolism are part of all metabolic processes, the carbohydrate, fat and protein metabolism. The term anabolic refers only to substances that exert an anabolic effect on protein metabolism and are unlikely to cause adverse androgenic effects. They shift the equilibrium between protein synthesis and degradation in the body as a whole in the direction of synthesis, either by promoting protein synthesis or reducing its breakdown. The protein anabolic effect of anabolic steroids is not restricted to single organs but is the result of stimulated biosynthesis of cellular protein in the whole organism.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhan Yin ◽  
Nils Burger ◽  
Duvaraka Kula-Alwar ◽  
Dunja Aksentijević ◽  
Hannah R. Bridges ◽  
...  

AbstractMitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia–reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the “deactive” state, usually formed only after prolonged inactivity. Despite its tendency to adopt the “deactive” state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Hironari Nishizawa ◽  
Mitsuyo Matsumoto ◽  
Guan Chen ◽  
Yusho Ishii ◽  
Keisuke Tada ◽  
...  

AbstractFerroptosis is a regulated cell death due to the iron-dependent accumulation of lipid peroxide. Ferroptosis is known to constitute the pathology of ischemic diseases, neurodegenerative diseases, and steatohepatitis and also works as a suppressing mechanism against cancer. However, how ferroptotic cells affect surrounding cells remains elusive. We herein report the transfer phenomenon of lipid peroxidation and cell death from ferroptotic cells to nearby cells that are not exposed to ferroptotic inducers (FINs). While primary mouse embryonic fibroblasts (MEFs) and NIH3T3 cells contained senescence-associated β-galactosidase (SA-β-gal)-positive cells, they were decreased upon induction of ferroptosis with FINs. The SA-β-gal decrease was inhibited by ferroptotic inhibitors and knockdown of Atg7, pointing to the involvement of lipid peroxidation and activated autophagosome formation during ferroptosis. A transfer of cell culture medium of cells treated with FINs, type 1 or 2, caused the reduction in SA-β-gal-positive cells in recipient cells that had not been exposed to FINs. Real-time imaging of Kusabira Orange-marked reporter MEFs cocultured with ferroptotic cells showed the generation of lipid peroxide and deaths of the reporter cells. These results indicate that lipid peroxidation and its aftereffects propagate from ferroptotic cells to surrounding cells, even when the surrounding cells are not exposed to FINs. Ferroptotic cells are not merely dying cells but also work as signal transmitters inducing a chain of further ferroptosis.


2020 ◽  
Vol 03 (04) ◽  
pp. 69-73
Author(s):  
Samira Mammadhasan Yagubova ◽  
◽  
Elchin Chingiz Akbarov ◽  
Tarana Nadir Mirzayeva ◽  
◽  
...  

During the staphylococcal infection, changes in the interaction of glandular cells, dystrophic and disorganizing pathologies in tissues, especially acute structural and hemodynamic changes in the stroma of the glands in the pituitary-adrenal-thyroid system, develop from the first day of the experiment. At the end of the experiment, on the background of a decrease in exudative processes, fibroplastic reactions are significantly activated, resulting in signs of incomplete regeneration – mainly sclerotic processes and cystic-atrophic changes in the parenchyma. Structural changes in tissues in the early stages of staphylococcal infection and the dynamics of development are characterized by specific symptoms in each of the glands. Since the pituitary gland is exposed to endogenous and exogenous factors earlier and more often than the adrenal glands, and the adrenal glands are earlier than the thyroid gland, dystrophic and destructive changes in the pituitary and adrenal glands are more pronounced at the early stage of the experiment. These morphological changes can change the hormonal status of the body and lead to dysfunction of the endocrine system as a whole – a decrease in the functional activity of the glands to some extent, and even inhibition of adenohypophyseal cells. Key words: staphylococcal infection, peritonitis, pituitary, adrenal and thyroid glands


2021 ◽  
Vol 31 (3) ◽  
pp. 468-490
Author(s):  
Saad Zighan ◽  
Ziad Alkalha ◽  
David Bamford ◽  
Iain Reid ◽  
Zu'bi M.F. Al-Zu'bi

PurposeThe purpose of this study is to investigate the structural changes needed for project-based organisations (PBOs) to synthesise their project operations and services following the servitisation strategy. It addresses the question of how PBOs should change their organisational structure fitting with service provision strategy.Design/methodology/approachThis study followed an exploratory research method using a single in-depth case with evidence collected from 51 project managers from five different industry sectors: construction, oil and gas, IT, logistics and health careFindingsCapitalising on organisational design theory, it has been found that successfully extending PBOs' outcomes into a system of both project output and extra services requires an adjustment of organisational structure that creates greater value for both companies and customers. This required adjustment has been divided into five main categories: (1) collaboration cross-project and customers; (2) flexible workflow, (3) decentralised decision-making, (4) wide span of control and (5) project governance. However, the findings indicate that success can only be ensured by particular mutually coordinated organisational designs with a suitable balance of products and servicesPractical implicationsThis study presents vital indicators to PBOs practitioners when deploying servitisation within their operational strategy by adjusting the organisation's design.Social implicationsServitisation could add both economic and social values for a diverse set of project stakeholders. However, the sustainability performance of servitisation in servitised project-based organisations is an outcome of reducing the discrepancy between project operation and service provision activities.Originality/valueThis study contributes to the body of knowledge and proposes a structural alteration process in PBOs to help align project operations and service provision activities. It explains how project-based organisations reconfigure their resources to provide services.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1836
Author(s):  
Dmitry Tikhonov ◽  
Liudmila Kulikova ◽  
Vladimir Rudnev ◽  
Arthur T. Kopylov ◽  
Amir Taldaev ◽  
...  

Post-translational modification (PTM) leads to conformational changes in protein structure, modulates the biological function of proteins, and, consequently, changes the signature of metabolic transformations and the immune response in the body. Common PTMs are reversible and serve as a mechanism for modulating metabolic trans-formations in cells. It is likely that dysregulation of post-translational cellular signaling leads to abnormal proliferation and oncogenesis. We examined protein PTMs in the blood samples from patients with kidney cancer. Conformational changes in proteins after modification were analyzed. The proteins were analyzed using ultra-high resolution HPLC-MS/MS and structural analysis was performed with the AMBER and GROMACS software packages. Fifteen proteins containing PTMs were identified in blood samples from patients with kidney cancer. For proteins with PDB structures, a comparative analysis of the structural changes accompanying the modifications was performed. Results revealed that PTMs are localized in stable and compact space protein globule motifs that are exposed to a solvent. The phenomenon of modification is accompanied, as a rule, by an increase in the area available for the solvent of the modified amino acid residue and its active environment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lin Zhang ◽  
Ruoqiu Fu ◽  
Dongyu Duan ◽  
Ziwei Li ◽  
Bin Li ◽  
...  

BackgroundCyclovirobuxine D (CVBD), a steroidal alkaloid, has multiple pharmacological activities, including anti-cancer activity. However, the anti-cancer effect of CVBD on glioblastoma (GBM) has seldom been investigated. This study explores the activity of CVBD in inducing apoptosis of GBM cells, and examines the related mechanism in depth.MethodsGBM cell lines (T98G, U251) and normal human astrocytes (HA) were treated with CVBD. Cell viability was examined by CCK-8 assay, and cell proliferation was evaluated by cell colony formation counts. Apoptosis and mitochondrial superoxide were measured by flow cytometry. All protein expression levels were determined by Western blotting. JC-1 and CM-H2DCFDA probes were used to evaluate the mitochondrial membrane potential (MMP) change and intracellular ROS generation, respectively. The cell ultrastructure was observed by transmission electron microscope (TEM). Colocalization of cofilin and mitochondria were determined by immunofluorescence assay.ResultsCVBD showed a greater anti-proliferation effect on the GBM cell lines, T98G and U251, than normal human astrocytes in dose- and time-dependent manners. CVBD induced apoptosis and mitochondrial damage in GBM cells. We found that CVBD led to mitochondrial translocation of cofilin. Knockdown of cofilin attenuated CVBD-induced apoptosis and mitochondrial damage. Additionally, the generation of ROS and mitochondrial superoxide was also induced by CVBD in a dose-dependent manner. N-acetyl-L-cysteine (NAC) and mitoquinone (MitoQ) pre-treatment reverted CVBD-induced apoptosis and mitochondrial damage. MitoQ pretreatment was able to block the mitochondrial translocation of cofilin caused by CVBD.ConclusionsOur data revealed that CVBD induced apoptosis and mitochondrial damage in GBM cells. The underlying mechanism is related to mitochondrial translocation of cofilin caused by mitochondrial oxidant stress.


Sign in / Sign up

Export Citation Format

Share Document