scholarly journals Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in an Alzheimer's disease model

2022 ◽  
Author(s):  
Hu Zeng ◽  
Jiahao Huang ◽  
Haowen Zhou ◽  
William J. Meilandt ◽  
Borislav Dejanovic ◽  
...  

Amyloid-β plaques and neurofibrillary tau tangles are the neuropathologic hallmarks of Alzheimer's disease (AD), but the spatiotemporal cellular responses and molecular mechanisms underlying AD pathophysiology remain poorly understood. Here we introduce STARmap PLUS to simultaneously map single-cell transcriptional states and disease marker proteins in brain tissues of AD mouse models at subcellular resolution (200 nm). This high-resolution spatial transcriptomics map revealed a core-shell structure where disease-associated microglia (DAM) closely contact amyloid-β plaques, whereas disease-associated astrocytes (DAA) and oligodendrocyte precursor cells (OPC) are enriched in the outer shells surrounding the plaque-DAM complex. Hyperphosphorylated tau emerged mainly in excitatory neurons in the CA1 region accompanied by the infiltration of oligodendrocyte subtypes into the axon bundles of hippocampal alveus. The integrative STARmap PLUS method bridges single-cell gene expression profiles with tissue histopathology at subcellular resolution, providing an unprecedented roadmap to pinpoint the molecular and cellular mechanisms of AD pathology and neurodegeneration.

2020 ◽  
Vol 217 (4) ◽  
Author(s):  
Erin G. Reed-Geaghan ◽  
Andrew L. Croxford ◽  
Burkhard Becher ◽  
Gary E. Landreth

Alzheimer’s disease (AD) is accompanied by a robust inflammatory response mediated by plaque-associated myeloid cells of the brain. These cells exhibit altered gene expression profiles and serve as a barrier, preventing neuritic dystrophy. The origin of these cells has been controversial and is of therapeutic importance. Here, we genetically labeled different myeloid populations and unequivocally demonstrated that plaque-associated myeloid cells in the AD brain are derived exclusively from resident microglia, with no contribution from circulating peripheral monocytes.


2021 ◽  
Vol 218 (9) ◽  
Author(s):  
Yun Chen ◽  
Marco Colonna

Alzheimer’s disease (AD) is characterized by extracellular aggregates of amyloid β peptides, intraneuronal tau aggregates, and neuronal death. This pathology triggers activation of microglia. Because variants of genes expressed in microglia correlate with AD risk, microglial response to pathology plausibly impacts disease course. In mouse AD models, single-cell RNA sequencing (scRNA-seq) analyses delineated this response as progressive conversion of homeostatic microglia into disease-associated microglia (DAM); additional reactive microglial populations have been reported in other models of neurodegeneration and neuroinflammation. We review all of these microglial signatures, highlighting four fundamental patterns: DAM, IFN–microglia, MHC-II microglia, and proliferating microglia. We propose that all reported microglia populations are either just one or a combination, depending on the clustering strategy applied and the disease model. We further review single-nucleus RNA sequencing (snRNA-seq) data from human AD specimens and discuss reasons for parallels and discrepancies between human and mouse transcriptional profiles. Finally, we outline future directions for delineating the microglial impact in AD pathogenesis.


2021 ◽  
Vol 10 (8) ◽  
pp. 1555
Author(s):  
Ágoston Patthy ◽  
János Murai ◽  
János Hanics ◽  
Anna Pintér ◽  
Péter Zahola ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3261
Author(s):  
Xiao Liu ◽  
Qian Zhou ◽  
Jia-He Zhang ◽  
Xiaoying Wang ◽  
Xiumei Gao ◽  
...  

Alzheimer’s disease (AD), the most common form of dementia, is characterized by amyloid-β (Aβ) accumulation, microglia-associated neuroinflammation, and synaptic loss. The detailed neuropathologic characteristics in early-stage AD, however, are largely unclear. We evaluated the pathologic brain alterations in young adult App knock-in model AppNL-G-F mice at 3 and 6 months of age, which corresponds to early-stage AD. At 3 months of age, microglia expression in the cortex and hippocampus was significantly decreased. By the age of 6 months, the number and function of the microglia increased, accompanied by progressive amyloid-β deposition, synaptic dysfunction, neuroinflammation, and dysregulation of β-catenin and NF-κB signaling pathways. The neuropathologic changes were more severe in female mice than in male mice. Oral administration of dioscin, a natural product, ameliorated the neuropathologic alterations in young AppNL-G-F mice. Our findings revealed microglia-based sex-differential neuropathologic changes in a mouse model of early-stage AD and therapeutic efficacy of dioscin on the brain lesions. Dioscin may represent a potential treatment for AD.


2021 ◽  
Author(s):  
Stella Belonwu ◽  
Yaqiao Li ◽  
Daniel Bunis ◽  
Arjun Arkal Rao ◽  
Caroline Warly Solsberg ◽  
...  

Abstract Alzheimer’s Disease (AD) is a complex neurodegenerative disease that gravely affects patients and imposes an immense burden on caregivers. Apolipoprotein E4 (APOE4) has been identified as the most common genetic risk factor for AD, yet the molecular mechanisms connecting APOE4 to AD are not well understood. Past transcriptomic analyses in AD have revealed APOE genotype-specific transcriptomic differences; however, these differences have not been explored at a single-cell level. Here, we leverage the first two single-nucleus RNA sequencing AD datasets from human brain samples, including nearly 55,000 cells from the prefrontal and entorhinal cortices. We observed more global transcriptomic changes in APOE4 positive AD cells and identified differences across APOE genotypes primarily in glial cell types. Our findings highlight the differential transcriptomic perturbations of APOE isoforms at a single-cell level in AD pathogenesis and have implications for precision medicine development in the diagnosis and treatment of AD.


2021 ◽  
Author(s):  
Swati Som ◽  
Justin Antony ◽  
Palanisamy Dhanabal ◽  
Ponnusankar Sivasankaran

Abstract Diosgenin is a neurosteroid derived from the plants and has been previously reported for its numerous health beneficial properties, such as anti-arrhythmic, hypolipidemic, and antiproliferative effects. Although several studies conducted earlier suggested cognition enhancement actions of diosgenin against neurodegenerative disorders, but the molecular mechanisms underlying are not clearly understood. In the present study, we investigated the neuroprotective effect of diosgenin in the wistar rats that received an intracerebroventricular injection of Amyloid-β (1–42) peptides, representing a rodent model of Alzheimer’s disease (AD). Animals were treated with 100 and 200 mg/kg/p.o of diosgenin for 28 days, followed by Amyloid-β (1–42) peptides infusion. Animals were assessed for the spatial learning and memory by using radial arm maze and passive avoidance task. Subsequently, animals were euthanized and brains were collected for biochemical estimations and histopathological studies. Our results revealed that, diosgenin administration dose dependently improved the spatial learning and memory and protected the animals from Amyloid-β (1–42) peptides induced disrupted cognitive functions. Further, biochemical analysis showed that diosgenin successfully attenuated Amyloid-β (1–42) mediated plaque load, oxidative stress, neuroinflammation and elevated acetylcholinesterase activity. In addition, histopathological evaluation also supported neuroprotective effects of diosgenin in hippocampus of rat brain when assessed using hematoxylin-eosin and Cresyl Violet staining. Thus, the aforementioned effects suggested protective action of diosgenin against Aβ (1–42) induced neuronal damage and thereby can serve as a potential therapeutic candidate for AD.


2020 ◽  
Vol 10 (3) ◽  
pp. 61 ◽  
Author(s):  
Chiara Villa ◽  
Marialuisa Lavitrano ◽  
Elena Salvatore ◽  
Romina Combi

Alzheimer’s disease (AD) is the most common neurodegenerative disease among the elderly, affecting millions of people worldwide and clinically characterized by a progressive and irreversible cognitive decline. The rapid increase in the incidence of AD highlights the need for an easy, efficient and accurate diagnosis of the disease in its initial stages in order to halt or delay the progression. The currently used diagnostic methods rely on measures of amyloid-β (Aβ), phosphorylated (p-tau) and total tau (t-tau) protein levels in the cerebrospinal fluid (CSF) aided by advanced neuroimaging techniques like positron emission tomography (PET) and magnetic resonance imaging (MRI). However, the invasiveness of these procedures and the high cost restrict their utilization. Hence, biomarkers from biological fluids obtained using non-invasive methods and novel neuroimaging approaches provide an attractive alternative for the early diagnosis of AD. Such biomarkers may also be helpful for better understanding of the molecular mechanisms underlying the disease, allowing differential diagnosis or at least prolonging the pre-symptomatic stage in patients suffering from AD. Herein, we discuss the advantages and limits of the conventional biomarkers as well as recent promising candidates from alternative body fluids and new imaging techniques.


2019 ◽  
Vol 122 (4) ◽  
pp. 1291-1296 ◽  
Author(s):  
Djuna von Maydell ◽  
Mehdi Jorfi

Microglia constitute ~10–20% of glial cells in the adult human brain. They are the resident phagocytic immune cells of the central nervous system and play an integral role as first responders during inflammation. Microglia are commonly classified as “HM” (homeostatic), “M1” (classically activated proinflammatory), or “M2” (alternatively activated). Multiple single-cell RNA-sequencing studies suggest that this discrete classification system does not accurately and fully capture the vast heterogeneity of microglial states in the brain. In fact, a recent single-cell RNA-sequencing study showed that microglia exist along a continuous spectrum of states. This spectrum spans heterogeneous populations of homeostatic and neuropathology-associated microglia in both healthy and Alzheimer’s disease (AD) mouse brains. Major risk factors, such as sex, age, and genes, modulate microglial states, suggesting that shifts along the trajectory might play a causal role in AD pathogenesis. This study provides important insight into the cellular mechanisms of AD and underlines the potential of novel cell-based therapies for AD.


2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Nobuhiro Watanabe ◽  
Yoshihiro Noda ◽  
Taeko Nemoto ◽  
Kaori Iimura ◽  
Takahiko Shimizu ◽  
...  

AbstractTransient ischemia is an exacerbation factor of Alzheimer’s disease (AD). We aimed to examine the influence of amyloid β (Aβ) deposition around the cerebral (pial) artery in terms of diameter changes in the cerebral artery during transient ischemia in AD model mice (APPNL-G-F) under urethane anesthesia. Cerebral vasculature and Aβ deposition were examined using two-photon microscopy. Cerebral ischemia was induced by transient occlusion of the unilateral common carotid artery. The diameter of the pial artery was quantitatively measured. In wild-type mice, the diameter of arteries increased during occlusion and returned to their basal diameter after re-opening. In AD model mice, the artery response during occlusion differed depending on Aβ deposition sites. Arterial diameter changes at non-Aβ deposition site were similar to those in wild-type mice, whereas they were significantly smaller at Aβ deposition site. The results suggest that cerebral artery changes during ischemia are impaired by Aβ deposition.


Sign in / Sign up

Export Citation Format

Share Document