scholarly journals Perturbation of ubiquitin homeostasis promotes macrophage oxidative defenses

2018 ◽  
Author(s):  
Marie-Eve Charbonneau ◽  
Karla D. Passalacqua ◽  
Susan E. Hagen ◽  
Hollis D. Showalter ◽  
Christiane E. Wobus ◽  
...  

Innate immune responses rely on specific pattern recognition receptors that induce downstream signaling cascades and promote inflammatory responses. Emerging evidence suggests that cells may also recognize alterations in cellular processes induced by infection. Protein ubiquitination is a post-translational modification essential for maintaining cellular homeostasis, and infection can cause global alterations in the host ubiquitin proteome. Here we used a chemical biology approach to perturb the cellular ubiquitin proteome as a simplified model to study the direct effect of ubiquitin homeostasis on macrophage responses. We show that perturbation of ubiquitin homeostasis results in a rapid and transient burst of reactive oxygen species (ROS) that promotes macrophage anti-infective capacity. ROS production was dependent on the activity of the phagocyte NADPH oxidase NOX2 and was associated with an increase in intracellular calcium. Our findings suggest that major changes in the host ubiquitin landscape may be a potent signal to rapidly deploy innate immune defenses.

Author(s):  
Benjamin W. Harding ◽  
Jonathan J. Ewbank

The simple notion ‘infection causes an immune response' is being progressively refined as it becomes clear that immune mechanisms cannot be understood in isolation, but need to be considered in a more global context with other cellular and physiological processes. In part, this reflects the deployment by pathogens of virulence factors that target diverse cellular processes, such as translation or mitochondrial respiration, often with great molecular specificity. It also reflects molecular cross-talk between a broad range of host signalling pathways. Studies with the model animal C. elegans have uncovered a range of examples wherein innate immune responses are intimately connected with different homeostatic mechanisms, and can influence reproduction, ageing and neurodegeneration, as well as various other aspects of its biology. Here we provide a short overview of a number of such connections, highlighting recent discoveries that further the construction of a fully integrated view of innate immunity.


2021 ◽  
Author(s):  
David Schneberger ◽  
Upkardeep Singh Pandher ◽  
Brooke Thompson ◽  
Shelley Kirychuk

Abstract Workplaces with elevated organic dust levels such as animal feed barns also commonly have elevated levels of gasses, such as CO2. Workers exposed to such complex environments often experience respiratory effects that may be due to a combination of respirable factors. We examined the effects of CO2 at the ASHRAE recommended limit (1000 ppm) as well as the EPA 8hr time weighted average limit (5000 ppm) on lung innate immune responses in mice with exposure to inflammatory lipopolysaccharide and organic dust. Mice were nasally instilled with dust extracts or LPS and immediately put into chambers with a constant flow of room air (approx. 430 ppm CO2), 1000 ppm, or 5000 ppm CO2 enriched air. Organic dust exposures tended to show decreased inflammatory responses with 1000 ppm CO2 and increased responses at 5000 ppm CO2. Conversely, LPS with addition of CO2 as low as 1000 ppm tended to inhibit several inflammatory markers. In most cases saline treated animals showed few changes with CO2 exposure, though some changes in mRNA levels were present. This shows that CO2 as low as 1000 ppm CO2 was capable of altering innate immune responses to both LPS and organic dust extracts, but each response was altered in a different fashion.


2018 ◽  
Vol 19 (10) ◽  
pp. 3003 ◽  
Author(s):  
Debora Giordano ◽  
Claudio Pinto ◽  
Luca Maroni ◽  
Antonio Benedetti ◽  
Marco Marzioni

Cholangiocytes, the epithelial cells lining the bile ducts, represent the unique target of a group of progressive diseases known as cholangiopathies whose pathogenesis remain largely unknown. In normal conditions, cholangiocytes are quiescent and participate to the final bile volume and composition. Following exogenous or endogenous stimuli, cholangiocytes undergo extensive modifications of their phenotype. Reactive cholangiocytes actively proliferate and release a set of proinflammatory molecules, which act in autocrine/paracrine manner mediating the cross-talk with other liver cell types and innate and adaptive immune cells. Cholangiocytes themselves activate innate immune responses against gut-derived microorganisms or bacterial products that reach the liver via enterohepatic circulation. Gut microbiota has been implicated in the development and progression of the two most common cholangiopathies, i.e., primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), which have distinctive microbiota composition compared to healthy individuals. The impairment of intestinal barrier functions or gut dysbiosis expose cholangiocytes to an increasing amount of microorganisms and may exacerbate inflammatory responses thus leading to fibrotic remodeling of the organ. The present review focuses on the complex interactions between the activation of innate immune responses in reactive cholangiocytes, dysbiosis, and gut permeability to bacterial products in the pathogenesis of PSC and PBC.


2020 ◽  
Author(s):  
Tobias Vahsen ◽  
Laura Zapata ◽  
Rodrigo Guabiraba ◽  
Elise Melloul ◽  
Nathalie Cordonnier ◽  
...  

Abstract Across the world, many commercial poultry flocks and captive birds are threatened by infection with Aspergillus fumigatus. Susceptibility to aspergillosis varies among birds; among galliform birds specifically, morbidity and mortality rates seem to be greater in turkeys than in chickens. Little is known regarding the features of avian immune responses after inhalation of Aspergillus conidia, and to date, scarce information on inflammatory responses during aspergillosis exists. Thus, in the present study, we aimed to improve our understanding of the interactions between A. fumigatus and economically relevant galliform birds in terms of local innate immune responses. Intra-tracheal aerosolization of A. fumigatus conidia in turkey and chicken poults led to more severe clinical signs and lung lesions in turkeys, but leukocyte recovery from lung lavages was higher in chickens at 1dpi only. Interestingly, only chicken CD8+ T lymphocyte proportions increased after infection. Furthermore, the lungs of infected chickens showed an early upregulation of pro-inflammatory cytokines, including IL-1β, IFN-γ and IL-6, whereas in turkeys, most of these cytokines showed a downregulation or a delayed upregulation. These results confirmed the importance of an early pro-inflammatory response to ensure the development of an appropriate anti-fungal immunity to avoid Aspergillus dissemination in the respiratory tract. In conclusion, we show for the first time that differences in local innate immune responses between chickens and turkeys during aspergillosis may determine the outcome of the disease. Lay Summary Aspergillus fumigatus infection may cause mortality in poultry, depending on species sensitivity. This study confirms the earlier activation of chickens’ pro-inflammatory effectors to control Aspergillus dissemination, whereas turkeys’ immune response enables the exacerbation of lung lesions.


2016 ◽  
Vol 125 (1) ◽  
pp. 237-249 ◽  
Author(s):  
Harmke D. Kiers ◽  
Gert-Jan Scheffer ◽  
Johannes G. van der Hoeven ◽  
Holger K. Eltzschig ◽  
Peter Pickkers ◽  
...  

Abstract Hypoxia and immunity are highly intertwined at clinical, cellular, and molecular levels. The prevention of tissue hypoxia and modulation of systemic inflammation are cornerstones of daily practice in the intensive care unit. Potentially, immunologic effects of hypoxia may contribute to outcome and represent possible therapeutic targets. Hypoxia and activation of downstream signaling pathways result in enhanced innate immune responses, aimed to augment pathogen clearance. On the other hand, hypoxia also exerts antiinflammatory and tissue-protective effects in lymphocytes and other tissues. Although human data on the net immunologic effects of hypoxia and pharmacologic modulation of downstream pathways are limited, preclinical data support the concept of tailoring the immune response through modulation of the oxygen status or pharmacologic modulation of hypoxia-signaling pathways in critically ill patients.


Biology ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 65
Author(s):  
Goncalo Barreto ◽  
Mikko Manninen ◽  
Kari K. Eklund

Osteoarthritis (OA) has long been viewed as a degenerative disease of cartilage, but accumulating evidence indicates that inflammation has a critical role in its pathogenesis. In particular, chondrocyte-mediated inflammatory responses triggered by the activation of innate immune receptors by alarmins (also known as danger signals) are thought to be involved. Thus, toll-like receptors (TLRs) and their signaling pathways are of particular interest. Recent reports suggest that among the TLR-induced innate immune responses, apoptosis is one of the critical events. Apoptosis is of particular importance, given that chondrocyte death is a dominant feature in OA. This review focuses on the role of TLR signaling in chondrocytes and the role of TLR activation in chondrocyte apoptosis. The functional relevance of TLR and TLR-triggered apoptosis in OA are discussed as well as their relevance as candidates for novel disease-modifying OA drugs (DMOADs).


2008 ◽  
Vol 205 (3) ◽  
pp. 685-698 ◽  
Author(s):  
Sébastien Conus ◽  
Remo Perozzo ◽  
Thomas Reinheckel ◽  
Christoph Peters ◽  
Leonardo Scapozza ◽  
...  

In the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. We describe a new proapoptotic pathway in which cathepsin D directly activates caspase-8. Cathepsin D is released from azurophilic granules in neutrophils in a caspase-independent but reactive oxygen species–dependent manner. Under inflammatory conditions, the translocation of cathepsin D in the cytosol is blocked. Pharmacological or genetic inhibition of cathepsin D resulted in delayed caspase activation and reduced neutrophil apoptosis. Cathepsin D deficiency or lack of its translocation in the cytosol prolongs innate immune responses in experimental bacterial infection and in septic shock. Thus, we identified a new function of azurophilic granules that is in addition to their role in bacterial defense mechanisms: to regulate the life span of neutrophils and, therefore, the duration of innate immune responses through the release of cathepsin D.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jack Kent Heflin ◽  
Wenjing Sun

Myelination is essential for signal processing within neural networks. Emerging data suggest that neuronal activity positively instructs myelin development and myelin adaptation during adulthood. However, the underlying mechanisms controlling activity-dependent myelination have not been fully elucidated. Myelination is a multi-step process that involves the proliferation and differentiation of oligodendrocyte precursor cells followed by the initial contact and ensheathment of axons by mature oligodendrocytes. Conventional end-point studies rarely capture the dynamic interaction between neurons and oligodendrocyte lineage cells spanning such a long temporal window. Given that such interactions and downstream signaling cascades are likely to occur within fine cellular processes of oligodendrocytes and their precursor cells, overcoming spatial resolution limitations represents another technical hurdle in the field. In this mini-review, we discuss how advanced genetic, cutting-edge imaging, and electrophysiological approaches enable us to investigate neuron-oligodendrocyte lineage cell interaction and myelination with both temporal and spatial precision.


2021 ◽  
Vol 22 (24) ◽  
pp. 13232
Author(s):  
Wanglong Zheng ◽  
Nengwen Xia ◽  
Jiajia Zhang ◽  
Nanhua Chen ◽  
François Meurens ◽  
...  

The cGAS–STING pathway is a key component of the innate immune system and exerts crucial roles in the detection of cytosolic DNA and invading pathogens. Accumulating evidence suggests that the intrinsic cGAS–STING pathway not only facilitates the production of type I interferons (IFN-I) and inflammatory responses but also triggers autophagy. Autophagy is a homeostatic process that exerts multiple effects on innate immunity. However, systematic evidence linking the cGAS–STING pathway and autophagy is still lacking. Therefore, one goal of this review is to summarize the known mechanisms of autophagy induced by the cGAS–STING pathway and their consequences. The cGAS–STING pathway can trigger canonical autophagy through liquid-phase separation of the cGAS–DNA complex, interaction of cGAS and Beclin-1, and STING-triggered ER stress–mTOR signaling. Furthermore, both cGAS and STING can induce non-canonical autophagy via LC3-interacting regions and binding with LC3. Subsequently, autophagy induced by the cGAS–STING pathway plays crucial roles in balancing innate immune responses, maintaining intracellular environmental homeostasis, alleviating liver injury, and limiting tumor growth and transformation.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Gabriel Fenteany ◽  
Paras Gaur ◽  
Gaurav Sharma ◽  
Lajos Pintér ◽  
Ernő Kiss ◽  
...  

Abstract Background Ubiquitination and ubiquitin-like protein post-translational modifications play an enormous number of roles in cellular processes. These modifications are constituted of multistep reaction cascades. Readily implementable and robust methods to evaluate each step of the overall process, while presently limited, are critical to the understanding and modulation of the reaction sequence at any desired level, both in terms of basic research and potential therapeutic drug discovery and development. Results We developed multiple robust and reliable high-throughput assays to interrogate each of the sequential discrete steps in the reaction cascade leading to protein ubiquitination. As models for the E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme, the E3 ubiquitin ligase, and their ultimate substrate of ubiquitination in a cascade, we examined Uba1, Rad6, Rad18, and proliferating cell nuclear antigen (PCNA), respectively, in reconstituted systems. Identification of inhibitors of this pathway holds promise in cancer therapy since PCNA ubiquitination plays a central role in DNA damage tolerance and resulting mutagenesis. The luminescence-based assays we developed allow for the quantitative determination of the degree of formation of ubiquitin thioester conjugate intermediates with both E1 and E2 proteins, autoubiquitination of the E3 protein involved, and ubiquitination of the final substrate. Thus, all covalent adducts along the cascade can be individually probed. We tested previously identified inhibitors of this ubiquitination cascade, finding generally good correspondence between compound potency trends determined by more traditional low-throughput methods and the present high-throughput ones. Conclusions These approaches are readily adaptable to other E1, E2, and E3 systems, and their substrates in both ubiquitination and ubiquitin-like post-translational modification cascades.


Sign in / Sign up

Export Citation Format

Share Document