scholarly journals SupportNet: a novel incremental learning framework through deep learning and support data

2018 ◽  
Author(s):  
Yu Li ◽  
Zhongxiao Li ◽  
Lizhong Ding ◽  
Yuhui Hu ◽  
Wei Chen ◽  
...  

ABSTRACTMotivationIn most biological data sets, the amount of data is regularly growing and the number of classes is continuously increasing. To deal with the new data from the new classes, one approach is to train a classification model, e.g., a deep learning model, from scratch based on both old and new data. This approach is highly computationally costly and the extracted features are likely very different from the ones extracted by the model trained on the old data alone, which leads to poor model robustness. Another approach is to fine tune the trained model from the old data on the new data. However, this approach often does not have the ability to learn new knowledge without forgetting the previously learned knowledge, which is known as the catastrophic forgetting problem. To our knowledge, this problem has not been studied in the field of bioinformatics despite its existence in many bioinformatic problems.ResultsHere we propose a novel method, SupportNet, to solve the catastrophic forgetting problem efficiently and effectively. SupportNet combines the strength of deep learning and support vector machine (SVM), where SVM is used to identify the support data from the old data, which are fed to the deep learning model together with the new data for further training so that the model can review the essential information of the old data when learning the new information. Two powerful consolidation regularizers are applied to ensure the robustness of the learned model. Comprehensive experiments on various tasks, including enzyme function prediction, subcellular structure classification and breast tumor classification, show that SupportNet drastically outperforms the state-of-the-art incremental learning methods and reaches similar performance as the deep learning model trained from scratch on both old and new data.AvailabilityOur program is accessible at: https://github.com/lykaust15/SupportNet.

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Zhiyuan Xie ◽  
Shichang Du ◽  
Jun Lv ◽  
Yafei Deng ◽  
Shiyao Jia

Remaining Useful Life (RUL) prediction is significant in indicating the health status of the sophisticated equipment, and it requires historical data because of its complexity. The number and complexity of such environmental parameters as vibration and temperature can cause non-linear states of data, making prediction tremendously difficult. Conventional machine learning models such as support vector machine (SVM), random forest, and back propagation neural network (BPNN), however, have limited capacity to predict accurately. In this paper, a two-phase deep-learning-model attention-convolutional forget-gate recurrent network (AM-ConvFGRNET) for RUL prediction is proposed. The first phase, forget-gate convolutional recurrent network (ConvFGRNET) is proposed based on a one-dimensional analog long short-term memory (LSTM), which removes all the gates except the forget gate and uses chrono-initialized biases. The second phase is the attention mechanism, which ensures the model to extract more specific features for generating an output, compensating the drawbacks of the FGRNET that it is a black box model and improving the interpretability. The performance and effectiveness of AM-ConvFGRNET for RUL prediction is validated by comparing it with other machine learning methods and deep learning methods on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset and a dataset of ball screw experiment.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Leow Wei Qin ◽  
Muneer Ahmad ◽  
Ihsan Ali ◽  
Rafia Mumtaz ◽  
Syed Mohammad Hassan Zaidi ◽  
...  

Achievement of precision measurement is highly desired in a current industrial revolution where a significant increase in living standards increased municipal solid waste. The current industry 4.0 standards require accurate and efficient edge computing sensors towards solid waste classification. Thus, if waste is not managed properly, it would bring about an adverse impact on health, the economy, and the global environment. All stakeholders need to realize their roles and responsibilities for solid waste generation and recycling. To ensure recycling can be successful, the waste should be correctly and efficiently separated. The performance of edge computing devices is directly proportional to computational complexity in the context of nonorganic waste classification. Existing research on waste classification was done using CNN architecture, e.g., AlexNet, which contains about 62,378,344 parameters, and over 729 million floating operations (FLOPs) are required to classify a single image. As a result, it is too heavy and not suitable for computing applications that require inexpensive computational complexities. This research proposes an enhanced lightweight deep learning model for solid waste classification developed using MobileNetV2, efficient for lightweight applications including edge computing devices and other mobile applications. The proposed model outperforms the existing similar models achieving an accuracy of 82.48% and 83.46% with Softmax and support vector machine (SVM) classifiers, respectively. Although MobileNetV2 may provide a lower accuracy if compared to CNN architecture which is larger and heavier, the accuracy is still comparable, and it is more practical for edge computing devices and mobile applications.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Jose M. Castillo T. ◽  
Muhammad Arif ◽  
Martijn P. A. Starmans ◽  
Wiro J. Niessen ◽  
Chris H. Bangma ◽  
...  

The computer-aided analysis of prostate multiparametric MRI (mpMRI) could improve significant-prostate-cancer (PCa) detection. Various deep-learning- and radiomics-based methods for significant-PCa segmentation or classification have been reported in the literature. To be able to assess the generalizability of the performance of these methods, using various external data sets is crucial. While both deep-learning and radiomics approaches have been compared based on the same data set of one center, the comparison of the performances of both approaches on various data sets from different centers and different scanners is lacking. The goal of this study was to compare the performance of a deep-learning model with the performance of a radiomics model for the significant-PCa diagnosis of the cohorts of various patients. We included the data from two consecutive patient cohorts from our own center (n = 371 patients), and two external sets of which one was a publicly available patient cohort (n = 195 patients) and the other contained data from patients from two hospitals (n = 79 patients). Using multiparametric MRI (mpMRI), the radiologist tumor delineations and pathology reports were collected for all patients. During training, one of our patient cohorts (n = 271 patients) was used for both the deep-learning- and radiomics-model development, and the three remaining cohorts (n = 374 patients) were kept as unseen test sets. The performances of the models were assessed in terms of their area under the receiver-operating-characteristic curve (AUC). Whereas the internal cross-validation showed a higher AUC for the deep-learning approach, the radiomics model obtained AUCs of 0.88, 0.91 and 0.65 on the independent test sets compared to AUCs of 0.70, 0.73 and 0.44 for the deep-learning model. Our radiomics model that was based on delineated regions resulted in a more accurate tool for significant-PCa classification in the three unseen test sets when compared to a fully automated deep-learning model.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dapeng Lang ◽  
Deyun Chen ◽  
Ran Shi ◽  
Yongjun He

Deep learning has been widely used in the field of image classification and image recognition and achieved positive practical results. However, in recent years, a number of studies have found that the accuracy of deep learning model based on classification greatly drops when making only subtle changes to the original examples, thus realizing the attack on the deep learning model. The main methods are as follows: adjust the pixels of attack examples invisible to human eyes and induce deep learning model to make the wrong classification; by adding an adversarial patch on the detection target, guide and deceive the classification model to make it misclassification. Therefore, these methods have strong randomness and are of very limited use in practical application. Different from the previous perturbation to traffic signs, our paper proposes a method that is able to successfully hide and misclassify vehicles in complex contexts. This method takes into account the complex real scenarios and can perturb with the pictures taken by a camera and mobile phone so that the detector based on deep learning model cannot detect the vehicle or misclassification. In order to improve the robustness, the position and size of the adversarial patch are adjusted according to different detection models by introducing the attachment mechanism. Through the test of different detectors, the patch generated in the single target detection algorithm can also attack other detectors and do well in transferability. Based on the experimental part of this paper, the proposed algorithm is able to significantly lower the accuracy of the detector. Affected by the real world, such as distance, light, angles, resolution, etc., the false classification of the target is realized by reducing the confidence level and background of the target, which greatly perturbs the detection results of the target detector. In COCO Dataset 2017, it reveals that the success rate of this algorithm reaches 88.7%.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Hao Chao ◽  
Liang Dong ◽  
Yongli Liu ◽  
Baoyun Lu

Emotion recognition based on multichannel electroencephalogram (EEG) signals is a key research area in the field of affective computing. Traditional methods extract EEG features from each channel based on extensive domain knowledge and ignore the spatial characteristics and global synchronization information across all channels. This paper proposes a global feature extraction method that encapsulates the multichannel EEG signals into gray images. The maximal information coefficient (MIC) for all channels was first measured. Subsequently, an MIC matrix was constructed according to the electrode arrangement rules and represented by an MIC gray image. Finally, a deep learning model designed with two principal component analysis convolutional layers and a nonlinear transformation operation extracted the spatial characteristics and global interchannel synchronization features from the constructed feature images, which were then input to support vector machines to perform the emotion recognition tasks. Experiments were conducted on the benchmark dataset for emotion analysis using EEG, physiological, and video signals. The experimental results demonstrated that the global synchronization features and spatial characteristics are beneficial for recognizing emotions and the proposed deep learning model effectively mines and utilizes the two salient features.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Renzhou Gui ◽  
Tongjie Chen ◽  
Han Nie

With the continuous development of science, more and more research results have proved that machine learning is capable of diagnosing and studying the major depressive disorder (MDD) in the brain. We propose a deep learning network with multibranch and local residual feedback, for four different types of functional magnetic resonance imaging (fMRI) data produced by depressed patients and control people under the condition of listening to positive- and negative-emotions music. We use the large convolution kernel of the same size as the correlation matrix to match the features and obtain the results of feature matching of 264 regions of interest (ROIs). Firstly, four-dimensional fMRI data are used to generate the two-dimensional correlation matrix of one person’s brain based on ROIs and then processed by the threshold value which is selected according to the characteristics of complex network and small-world network. After that, the deep learning model in this paper is compared with support vector machine (SVM), logistic regression (LR), k-nearest neighbor (kNN), a common deep neural network (DNN), and a deep convolutional neural network (CNN) for classification. Finally, we further calculate the matched ROIs from the intermediate results of our deep learning model which can help related fields further explore the pathogeny of depression patients.


2021 ◽  
Vol 7 ◽  
pp. e551
Author(s):  
Nihad Karim Chowdhury ◽  
Muhammad Ashad Kabir ◽  
Md. Muhtadir Rahman ◽  
Noortaz Rezoana

The goal of this research is to develop and implement a highly effective deep learning model for detecting COVID-19. To achieve this goal, in this paper, we propose an ensemble of Convolutional Neural Network (CNN) based on EfficientNet, named ECOVNet, to detect COVID-19 from chest X-rays. To make the proposed model more robust, we have used one of the largest open-access chest X-ray data sets named COVIDx containing three classes—COVID-19, normal, and pneumonia. For feature extraction, we have applied an effective CNN structure, namely EfficientNet, with ImageNet pre-training weights. The generated features are transferred into custom fine-tuned top layers followed by a set of model snapshots. The predictions of the model snapshots (which are created during a single training) are consolidated through two ensemble strategies, i.e., hard ensemble and soft ensemble, to enhance classification performance. In addition, a visualization technique is incorporated to highlight areas that distinguish classes, thereby enhancing the understanding of primal components related to COVID-19. The results of our empirical evaluations show that the proposed ECOVNet model outperforms the state-of-the-art approaches and significantly improves detection performance with 100% recall for COVID-19 and overall accuracy of 96.07%. We believe that ECOVNet can enhance the detection of COVID-19 disease, and thus, underpin a fully automated and efficacious COVID-19 detection system.


Author(s):  
Qusay Abdullah Abed ◽  
Osamah Mohammed Fadhil ◽  
Wathiq Laftah Al-Yaseen

In general, multidimensional data (mobile application for example) contain a large number of unnecessary information. Web app users find it difficult to get the information needed quickly and effectively due to the sheer volume of data (big data produced per second). In this paper, we tend to study the data mining in web personalization using blended deep learning model. So, one of the effective solutions to this problem is web personalization. As well as, explore how this model helps to analyze and estimate the huge amounts of operations. Providing personalized recommendations to improve reliability depends on the web application using useful information in the web application. The results of this research are important for the training and testing of large data sets for a map of deep mixed learning based on the model of back-spread neural network. The HADOOP framework was used to perform a number of experiments in a different environment with a learning rate between -1 and +1. Also, using the number of techniques to evaluate the number of parameters, true positive cases are represent and fall into positive cases in this example to evaluate the proposed model.


2020 ◽  
Vol 12 (6) ◽  
pp. 923 ◽  
Author(s):  
Kuiliang Gao ◽  
Bing Liu ◽  
Xuchu Yu ◽  
Jinchun Qin ◽  
Pengqiang Zhang ◽  
...  

Deep learning has achieved great success in hyperspectral image classification. However, when processing new hyperspectral images, the existing deep learning models must be retrained from scratch with sufficient samples, which is inefficient and undesirable in practical tasks. This paper aims to explore how to accurately classify new hyperspectral images with only a few labeled samples, i.e., the hyperspectral images few-shot classification. Specifically, we design a new deep classification model based on relational network and train it with the idea of meta-learning. Firstly, the feature learning module and the relation learning module of the model can make full use of the spatial–spectral information in hyperspectral images and carry out relation learning by comparing the similarity between samples. Secondly, the task-based learning strategy can enable the model to continuously enhance its ability to learn how to learn with a large number of tasks randomly generated from different data sets. Benefitting from the above two points, the proposed method has excellent generalization ability and can obtain satisfactory classification results with only a few labeled samples. In order to verify the performance of the proposed method, experiments were carried out on three public data sets. The results indicate that the proposed method can achieve better classification results than the traditional semisupervised support vector machine and semisupervised deep learning models.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3363 ◽  
Author(s):  
Taylor Mauldin ◽  
Marc Canby ◽  
Vangelis Metsis ◽  
Anne Ngu ◽  
Coralys Rivera

This paper presents SmartFall, an Android app that uses accelerometer data collected from a commodity-based smartwatch Internet of Things (IoT) device to detect falls. The smartwatch is paired with a smartphone that runs the SmartFall application, which performs the computation necessary for the prediction of falls in real time without incurring latency in communicating with a cloud server, while also preserving data privacy. We experimented with both traditional (Support Vector Machine and Naive Bayes) and non-traditional (Deep Learning) machine learning algorithms for the creation of fall detection models using three different fall datasets (Smartwatch, Notch, Farseeing). Our results show that a Deep Learning model for fall detection generally outperforms more traditional models across the three datasets. This is attributed to the Deep Learning model’s ability to automatically learn subtle features from the raw accelerometer data that are not available to Naive Bayes and Support Vector Machine, which are restricted to learning from a small set of extracted features manually specified. Furthermore, the Deep Learning model exhibits a better ability to generalize to new users when predicting falls, an important quality of any model that is to be successful in the real world. We also present a three-layer open IoT system architecture used in SmartFall, which can be easily adapted for the collection and analysis of other sensor data modalities (e.g., heart rate, skin temperature, walking patterns) that enables remote monitoring of a subject’s wellbeing.


Sign in / Sign up

Export Citation Format

Share Document