scholarly journals Genetic and Epigenetic Fine Mapping of Complex Trait Associated Loci in the Human Liver

2018 ◽  
Author(s):  
Minal Çalışkan ◽  
Elisabetta Manduchi ◽  
H. Shanker Rao ◽  
Julian A Segert ◽  
Marcia Holsbach Beltrame ◽  
...  

ABSTRACTDeciphering the impact of genetic variation on gene regulation is fundamental to understanding common, complex human diseases. Although histone modifications are important markers of gene regulatory regions of the genome, any specific histone modification has not been assayed in more than a few individuals in the human liver. As a result, the impacts of genetic variation that direct histone modification states in the liver are poorly understood. Here, we generate the most comprehensive genome-wide dataset of two epigenetic marks, H3K4me3 and H3K27ac, and annotate thousands of putative regulatory elements in the human liver. We integrate these findings with genome-wide gene expression data collected from the same human liver tissues and high-resolution promoter-focused chromatin interaction maps collected from human liver-derived HepG2 cells. We demonstrate widespread functional consequences of natural genetic variation on putative regulatory element activity and gene expression levels. Leveraging these extensive datasets, we fine-map a total of 77 GWAS loci that have been associated with at least one complex phenotype. Our results contribute to the repertoire of genes and regulatory mechanisms governing complex disease development and further the basic understanding of genetic and epigenetic regulation of gene expression in the human liver tissue.

2020 ◽  
Vol 13 (6) ◽  
Author(s):  
Amelia Weber Hall ◽  
Mark Chaffin ◽  
Carolina Roselli ◽  
Honghuang Lin ◽  
Steven A. Lubitz ◽  
...  

Background: Atrial fibrillation (AF) often arises from structural abnormalities in the left atria (LA). Annotation of the noncoding genome in human LA is limited, as are effects on gene expression and chromatin architecture. Many AF-associated genetic variants reside in noncoding regions; this knowledge gap impairs efforts to understand the molecular mechanisms of AF and cardiac conduction phenotypes. Methods: We generated a model of the LA noncoding genome by profiling 7 histone post-translational modifications (active: H3K4me3, H3K4me2, H3K4me1, H3K27ac, H3K36me3; repressive: H3K27me3, H3K9me3), CTCF binding, and gene expression in samples from 5 individuals without structural heart disease or AF. We used MACS2 to identify peak regions ( P <0.01), applied a Markov model to classify regulatory elements, and annotated this model with matched gene expression data. We intersected chromatin states with expression quantitative trait locus, DNA methylation, and HiC chromatin interaction data from LA and left ventricle. Finally, we integrated genome-wide association data for AF and electrocardiographic traits to link disease-related variants to genes. Results: Our model identified 21 epigenetic states, encompassing regulatory motifs, such as promoters, enhancers, and repressed regions. Genes were regulated by proximal chromatin states; repressive states were associated with a significant reduction in gene expression ( P <2×10 −16 ). Chromatin states were differentially methylated, promoters were less methylated than repressed regions ( P <2×10 −16 ). We identified over 15 000 LA-specific enhancers, defined by homeobox family motifs, and annotated several cardiovascular disease susceptibility loci. Intersecting AF and PR genome-wide association studies loci with long-range chromatin conformation data identified a gene interaction network dominated by NKX2-5 , TBX3 , ZFHX3 , and SYNPO2L . Conclusions: Profiling the noncoding genome provides new insights into the gene expression and chromatin regulation in human LA tissue. These findings enabled identification of a gene network underlying AF; our experimental and analytic approach can be extended to identify molecular mechanisms for other cardiac diseases and traits.


2020 ◽  
Author(s):  
Swann Floc’hlay ◽  
Emily Wong ◽  
Bingqing Zhao ◽  
Rebecca R. Viales ◽  
Morgane Thomas-Chollier ◽  
...  

AbstractPrecise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequence, and chromatin. How DNA mutations affecting any one of these regulatory ‘layers’ is buffered or propagated to gene expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and gene expression in F1 embryos generated from eight Drosophila crosses, at three embryonic stages, yielding a comprehensive dataset of 240 samples spanning multiple regulatory layers. Genetic variation in cis-regulatory elements is common, highly heritable, and surprisingly consistent in its effects across embryonic stages. Much of this variation does not propagate to gene expression. When it does, it acts through H3K4me3 or alternatively through chromatin accessibility and H3K27ac. The magnitude and evolutionary impact of mutations is influenced by a genes’ regulatory complexity (i.e. enhancer number), with transcription factors being most robust to cis-acting, and most influenced by trans-acting, variation. Overall, the impact of genetic variation on regulatory phenotypes appears context-dependent even within the constraints of embryogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Manas Joshi ◽  
Adamandia Kapopoulou ◽  
Stefan Laurent

The unprecedented rise of high-throughput sequencing and assay technologies has provided a detailed insight into the non-coding sequences and their potential role as gene expression regulators. These regulatory non-coding sequences are also referred to as cis-regulatory elements (CREs). Genetic variants occurring within CREs have been shown to be associated with altered gene expression and phenotypic changes. Such variants are known to occur spontaneously and ultimately get fixed, due to selection and genetic drift, in natural populations and, in some cases, pave the way for speciation. Hence, the study of genetic variation at CREs has improved our overall understanding of the processes of local adaptation and evolution. Recent advances in high-throughput sequencing and better annotations of CREs have enabled the evaluation of the impact of such variation on gene expression, phenotypic alteration and fitness. Here, we review recent research on the evolution of CREs and concentrate on studies that have investigated genetic variation occurring in these regulatory sequences within the context of population genetics.


2021 ◽  
Vol 118 (21) ◽  
pp. e2013230118
Author(s):  
Jia-yuan Gong ◽  
Cui-jiao Wen ◽  
Ming-liang Tang ◽  
Rui-fang Duan ◽  
Juan-nan Chen ◽  
...  

G-quadruplexes (G4s) formed by guanine-rich nucleic acids play a role in essential biological processes such as transcription and replication. Besides the >1.5 million putative G-4–forming sequences (PQSs), the human genome features >640 million single-nucleotide variations (SNVs), the most common type of genetic variation among people or populations. An SNV may alter a G4 structure when it falls within a PQS motif. To date, genome-wide PQS–SNV interactions and their impact have not been investigated. Herein, we present a study on the PQS–SNV interactions and the impact they can bring to G4 structures and, subsequently, gene expressions. Based on build 154 of the Single Nucleotide Polymorphism Database (dbSNP), we identified 5 million gains/losses or structural conversions of G4s that can be caused by the SNVs. Of these G4 variations (G4Vs), 3.4 million are within genes, resulting in an average load of >120 G4Vs per gene, preferentially enriched near the transcription start site. Moreover, >80% of the G4Vs overlap with transcription factor–binding sites and >14% with enhancers, giving an average load of 3 and 7.5 for the two regulatory elements, respectively. Our experiments show that such G4Vs can significantly influence the expression of their host genes. These results reveal genome-wide G4Vs and their impact on gene activity, emphasizing an understanding of genetic variation, from a structural perspective, of their physiological function and pathological implications. The G4Vs may also provide a unique category of drug targets for individualized therapeutics, health risk assessment, and drug development.


2018 ◽  
Author(s):  
Tal Cohen ◽  
Chen Mordechai ◽  
Alal Eran ◽  
Dan Mishmar

Expression quantitative trait loci (eQTLs) are instrumental in genome-wide identification of regulatory elements, yet were overlooked in the mitochondrial DNA (mtDNA). By analyzing 5079 RNA-seq samples from 23 tissues we identified association of ancient mtDNA SNPs (haplogroups T2, L2, J2 and V) and recurrent SNPs (mtDNA positions 263, 750, 1438 and 10398) with tissue-dependent mtDNA gene-expression. Since the recurrent SNPs independently occurred in different mtDNA genetic backgrounds, they constitute the best candidates to be causal eQTLs. Secondly, the discovery of mtDNA eQTLs in both coding and non-coding mtDNA regions, propose the identification of novel mtDNA regulatory elements. Third, we identified association between low m1A 947 MT-RNR2 (16S) rRNA modification levels and altered mtDNA gene-expression in twelve tissues. Such association disappeared in skin which was exposed to sun, as compared to sun-unexposed skin from the same individuals, thus supporting the impact of UV on mtDNA gene expression. Taken together, our findings reveal that both mtDNA SNPs and mt-rRNA modification affect mtDNA gene expression in a tissue-dependent manner.


2020 ◽  
Author(s):  
Zeyang Shen ◽  
Jenhan Tao ◽  
Gregory J. Fonseca ◽  
Christopher K. Glass

AbstractRegulation of gene expression requires the combinatorial binding of sequence-specific transcription factors (TFs) at promoters and enhancers. Single nucleotide polymorphisms (SNPs) and short insertions and deletions (InDels) can influence gene expression by altering the sequences of TF binding sites. Prior studies also showed that alterations in the spacing between TF binding sites can influence promoter and enhancer activity. However, the relative importance of altered TF spacing has not been systematically analyzed in the context of natural genetic variation. Here, we exploit millions of InDels provided by five diverse strains of mice to globally investigate the effects of altered spacing on TF binding and local histone acetylation in macrophages. We find that spacing alterations resulting from InDels are generally well tolerated in comparison to genetic variants that directly alter TF binding sites. These findings have implications for interpretation of non-coding genetic variation and comparative analysis of regulatory elements across species.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Briana E Mittleman ◽  
Sebastian Pott ◽  
Shane Warland ◽  
Tony Zeng ◽  
Zepeng Mu ◽  
...  

Little is known about co-transcriptional or post-transcriptional regulatory mechanisms linking noncoding variation to variation in organismal traits. To begin addressing this gap, we used 3’ Seq to study the impact of genetic variation on alternative polyadenylation (APA) in the nuclear and total mRNA fractions of 52 HapMap Yoruba human lymphoblastoid cell lines. We mapped 602 APA quantitative trait loci (apaQTLs) at 10% FDR, of which 152 were nuclear specific. Effect sizes at intronic apaQTLs are negatively correlated with eQTL effect sizes. These observations suggest genetic variants can decrease mRNA expression levels by increasing usage of intronic PAS. We also identified 24 apaQTLs associated with protein levels, but not mRNA expression. Finally, we found that 19% of apaQTLs can be associated with disease. Thus, our work demonstrates that APA links genetic variation to variation in gene expression, protein expression, and disease risk, and reveals uncharted modes of genetic regulation.


Genome ◽  
2020 ◽  
pp. 1-11
Author(s):  
Bahar Patlar ◽  
Alberto Civetta

It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms’ differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.


2020 ◽  
Author(s):  
SK Reilly ◽  
SJ Gosai ◽  
A Gutierrez ◽  
JC Ulirsch ◽  
M Kanai ◽  
...  

AbstractCRISPR screens for cis-regulatory elements (CREs) have shown unprecedented power to endogenously characterize the non-coding genome. To characterize CREs we developed HCR-FlowFISH (Hybridization Chain Reaction Fluorescent In-Situ Hybridization coupled with Flow Cytometry), which directly quantifies native transcripts within their endogenous loci following CRISPR perturbations of regulatory elements, eliminating the need for restrictive phenotypic assays such as growth or transcript-tagging. HCR-FlowFISH accurately quantifies gene expression across a wide range of transcript levels and cell types. We also developed CASA (CRISPR Activity Screen Analysis), a hierarchical Bayesian model to identify and quantify CRE activity. Using >270,000 perturbations, we identified CREs for GATA1, HDAC6, ERP29, LMO2, MEF2C, CD164, NMU, FEN1 and the FADS gene cluster. Our methods detect subtle gene expression changes and identify CREs regulating multiple genes, sometimes at different magnitudes and directions. We demonstrate the power of HCR-FlowFISH to parse genome-wide association signals by nominating causal variants and target genes.


2021 ◽  
Author(s):  
Yu Zhang ◽  
Yanyun Li ◽  
Yuanyuan Zhang ◽  
Zeyu Zhang ◽  
Deyu Zhang ◽  
...  

Flag leaf senescence is an important biological process that drives the remobilization of nutrients to the growing organs of rice. Leaf senescence is controlled by genetic information via gene expression and epigenetic modification, but the precise mechanism is as of yet unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq) and examined its association with transcriptomes by RNA-seq during flag leaf aging in rice (Oryza sativa). We found that genome-wide H3K9 acetylation levels increased with age-dependent senescence in rice flag leaf, and there was a positive correlation between the density and breadth of H3K9ac and gene expression and transcript elongation. A set of 1,249 up-regulated, differentially expressed genes (DEGs) and 996 down-regulated DEGs showing a strong relationship between temporal changes in gene expression and gain/loss of H3K9ac was observed during rice flag leaf aging. We produced a landscape of H3K9 acetylation- modified gene expression targets that includes known senescence-associated genes, metabolism-related genes, as well as miRNA biosynthesis- related genes. Our findings reveal a complex regulatory network of metabolism- and senescence-related pathways mediated by H3K9ac and also elucidate patterns of H3K9ac-mediated regulation of gene expression during flag leaf aging in rice.


Sign in / Sign up

Export Citation Format

Share Document