scholarly journals Candidate regulators and target genes of drought stress in needles and roots of Norway spruce

2019 ◽  
Author(s):  
Julia C. Haas ◽  
Alexander Vergara ◽  
Vaughan Hurry ◽  
Nathaniel R. Street

AbstractDrought stress impacts on seedling establishment, survival and whole-plant productivity. Drought stress responses have been extensively studied at the physiological and molecular level in angiosperms, particularly in agricultural species and the model Arabidopsis thaliana, with the vast majority of work performed on aboveground tissues. Boreal forests are dominated by coniferous tree species and cover vast areas of the terrestrial surface. These areas are predicted to be particularly influenced by ongoing climate change and will be exposed to more frequent and acute drought. The associated impact at all stages of the forest tree life cycle is expected to have large-scale ecological and economic impacts. To provide a comprehensive understanding of the drought response mechanisms of Picea abies seedlings, we assayed the physiological response of needles and transcriptional responses of roots and needles after exposure to mild and severe drought. Shoots and needles showed extensive reversible plasticity for physiological measures indicative of drought response mechanisms, including stomatal conductance (gs) and shoot water potential. Root and needle transcriptional responses contrasted, with an extensive root-specific down-regulation of growth. When we compared the responses of P. abies with previously-characterised A. thaliana drought response genes, we found that the majority of the genes were conserved across lineages. However, in P. abies, transcription factors (TFs) previously identified as belonging to the ABA-dependent pathway had a more limited role and most differentially expressed genes were specific to the stress response of P. abies. These results highlight the importance of profiling both above- and below-ground tissues and provide a comprehensive framework to advance understanding of the drought response mechanism of P. abies.One sentence summaryAnalysis of the drought transcriptome of Norway spruce reveals divergent molecular response pathways in conifers.


2021 ◽  
Author(s):  
Yukari Nagatoshi ◽  
Kenta Ikazaki ◽  
Nobuyuki Mizuno ◽  
Yasufumi Kobayashi ◽  
Kenichiro Fujii ◽  
...  

Drought severely damages crop production, even under conditions so mild that the leaves show no signs of wilting. As effective methods for analyzing the field drought response have not been established, it is unclear how field-grown plants respond to mild drought. We show that ridges are a useful experimental tool to mimic mild drought stress in the field. Mild drought reduces inorganic phosphate levels in the leaves to activate the phosphate starvation response (PSR) in field-grown soybean plants. PSR-related gene expression is mainly observed under drought conditions that are too mild to activate abscisic acid-mediated gene expression. Thus, our study provides insights into the molecular response to mild drought in field-grown plants and into the link between nutritional and drought stress responses in plants.



Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261
Author(s):  
Md. Mahadi Hasan ◽  
Milan Skalicky ◽  
Mohammad Shah Jahan ◽  
Md. Nazmul Hossain ◽  
Zunaira Anwar ◽  
...  

In recent years, research on spermine (Spm) has turned up a lot of new information about this essential polyamine, especially as it is able to counteract damage from abiotic stresses. Spm has been shown to protect plants from a variety of environmental insults, but whether it can prevent the adverse effects of drought has not yet been reported. Drought stress increases endogenous Spm in plants and exogenous application of Spm improves the plants’ ability to tolerate drought stress. Spm’s role in enhancing antioxidant defense mechanisms, glyoxalase systems, methylglyoxal (MG) detoxification, and creating tolerance for drought-induced oxidative stress is well documented in plants. However, the influences of enzyme activity and osmoregulation on Spm biosynthesis and metabolism are variable. Spm interacts with other molecules like nitric oxide (NO) and phytohormones such as abscisic acid, salicylic acid, brassinosteroids, and ethylene, to coordinate the reactions necessary for developing drought tolerance. This review focuses on the role of Spm in plants under severe drought stress. We have proposed models to explain how Spm interacts with existing defense mechanisms in plants to improve drought tolerance.



2021 ◽  
Author(s):  
Florian Schnabel ◽  
Sarah Purrucker ◽  
Lara Schmitt ◽  
Rolf A. Engelmann ◽  
Anja Kahl ◽  
...  

Droughts increasingly threaten the worlds forests and their potential to mitigate climate change. In 2018-2019, Central European forests were hit by two consecutive hotter drought years, an unprecedented phenomenon that is likely to occur more frequently with climate change. Here, we examine trees growth resistance and physiological stress responses (increase in carbon isotope composition; Δδ13C) to this consecutive drought based on tree-rings of dominant tree species in a Central European floodplain forest. Tree growth was not reduced for most species in 2018, indicating that water supply in floodplain forests can partly buffer meteorological water deficits. Drought stress in 2018 was comparable to former single drought years, but the cumulative drought stress in 2019 induced drastic decreases in growth resistance and increases in Δδ13C across all species. Consecutive hotter droughts pose a novel threat to forests under climate change, even in forest ecosystems with high levels of water supply.



2021 ◽  
Vol 12 ◽  
Author(s):  
Shenglan Li ◽  
Liang Fang ◽  
Josefine Nymark Hegelund ◽  
Fulai Liu

Increasing atmospheric CO2 concentrations accompanied by abiotic stresses challenge food production worldwide. Elevated CO2 (e[CO2]) affects plant water relations via multiple mechanisms involving abscisic acid (ABA). Here, two tomato (Solanum lycopersicum) genotypes, Ailsa Craig (AC) and its ABA-deficient mutant (flacca), were used to investigate the responses of plant hydraulic conductance to e[CO2] and drought stress. Results showed that e[CO2] decreased transpiration rate (E) increased plant water use efficiency only in AC, whereas it increased daily plant water consumption and osmotic adjustment in both genotypes. Compared to growth at ambient [CO2], AC leaf and root hydraulic conductance (Kleaf and Kroot) decreased at e[CO2], which coincided with the transcriptional regulations of genes of plasma membrane intrinsic proteins (PIPs) and OPEN STOMATA 1 (OST1), and these effects were attenuated in flacca during soil drying. Severe drought stress could override the effects of e[CO2] on plant water relation characteristics. In both genotypes, drought stress resulted in decreased E, Kleaf, and Kroot accompanied by transcriptional responses of PIPs and OST1. However, under conditions combining e[CO2] and drought, some PIPs were not responsive to drought in AC, indicating that e[CO2] might disturb ABA-mediated drought responses. These results provide some new insights into mechanisms of plant hydraulic response to drought stress in a future CO2-enriched environment.



Author(s):  
Xenia Hao-Yi Yeoh ◽  
Blessing Durodola ◽  
Kathrin Blumenstein ◽  
Eeva Terhonen

The major threats to the sustainable supply of forest tree products are adverse climate, pests and diseases. Climate change, exemplified by increased drought, poses a unique threat to global forest health. This is attributed to the unpredictable behavior of forest pathosystems, which can favor fungal pathogens over the host under persistent drought stress conditions in the future. Currently, the effects of drought on tree resistance against pathogens are hypothetical, thus research is needed to identify these correlations. Norway spruce (Picea abies) is one of the most economically important tree species in Europe, and is considered highly vulnerable to changes in climate. Dedicated experiments to investigate how disturbances will affect the Norway spruce - Heterobasidion sp. pathosystem are important, in order to develop different strategies to limit the spread of H. annosum s.l. under the predicted climate change. Here, we report a transcriptional study to compare Norway spruce gene expressions to evaluate the effects of water availability and the infection of Heterobasidion parviporum. We performed inoculation studies of three-year-old saplings in a greenhouse (purchased from a nursery). Norway spruce saplings were treated in either high (+) or low (-) water groups: high water group received double the water amount than the low water group. RNA was extracted and sequenced. Similarly, we quantified gene expression levels of candidate genes in biotic stress and jasmonic acid (JA) signaling pathways using qRT-PCR, through which we discovered a unique preferential defense response of H. parviporum-infected Norway spruce under drought stress at the molecular level. Disturbances related to water availability, especially low water conditions can have negative effects on the tree host and benefit the infection ability of the pathogens in the host. From our RNA-seq analysis, 114 differentially expressed gene regions were identified between high (+) and low (-) water groups under pathogen attack. None of these gene pathways were identified to be differentially expressed from both non-treated and mock-control treatments between high (+) and low (-) water groups. Finally, only four genes were found to be associated with drought in all treatments.



2020 ◽  
Vol 21 (4) ◽  
pp. 1457 ◽  
Author(s):  
Rachele Falchi ◽  
Elisa Petrussa ◽  
Enrico Braidot ◽  
Paolo Sivilotti ◽  
Francesco Boscutti ◽  
...  

In grapevine, the anatomy of xylem conduits and the non-structural carbohydrates (NSCs) content of the associated living parenchyma are expected to influence water transport under water limitation. In fact, both NSC and xylem features play a role in plant recovery from drought stress. We evaluated these traits in petioles of Cabernet Sauvignon (CS) and Syrah (SY) cultivars during water stress (WS) and recovery. In CS, the stress response was associated to NSC consumption, supporting the hypothesis that starch mobilization is related to an increased supply of maltose and sucrose, putatively involved in drought stress responses at the xylem level. In contrast, in SY, the WS-induced increase in the latter soluble NSCs was maintained even 2 days after re-watering, suggesting a different pattern of utilization of NSC resources. Interestingly, the anatomical analysis revealed that conduits are constitutively wider in SY in well-watered (WW) plants, and that water stress led to the production of narrower conduits only in this cultivar.



2015 ◽  
Vol 66 (8) ◽  
pp. 817 ◽  
Author(s):  
Hang T. T. Vu ◽  
A. Kilian ◽  
A. T. James ◽  
L. M. Bielig ◽  
R. J. Lawn

This study applied newly developed Diversity Arrays Technology (DArT) and soybean and mungbean DArT libraries for quantitative trait locus (QTL) linkage analysis in recombinant inbred lines (RILs) from three soybean crosses that had previously been assessed for physiological response to severe drought stress. The phenotypic assessments had identified statistically significant genetic variation among and within the RIL populations and their parents for three drought-related responses: epidermal conductance (ge) and relative water content (RWC) during stress, and plant recovery after stress. The new linkage maps containing only DArT markers for the three populations individually contained 196–409 markers and 15–22 linkage groups (LGs), with an aggregate length ranging from 409.4 to 516.7 cM. An integrated map constructed by using the marker data from all three RIL populations comprised 759 DArT markers, 27 LGs and an expanded length of 762.2 cM. Two populations with the landrace accession G2120 as a parent, CPI 26671 × G2120 (CG) and Valder × G2120 (VG), respectively contained 106 and 34 QTLs. In each of these populations, 10 LGs harboured QTLs associated with RWC, ge and recovery ability, of which six similar LGs were associated with drought tolerance. A BLAST (Basic Local Alignment Search Tool) search for sequences of 19 selected DArT markers linked to QTLs conditioning the drought-response traits indicated that 18 DArT markers were unique and aligned to 12 soybean chromosomes. Comparison of these sequenced DArT markers with other markers associated with drought-related QTLs in previously reported studies using other marker types confirmed that five of them overlapped, whereas the remaining 13 were new. Except for chromosome 15, the chromosomes with which the DArT QTLs in the CG and VG populations were associated were those that had been shown to harbour drought-related QTLs in previous studies. A BLASTx protein database search identified soPt-856602 as being associated with the gene for a probable glycosyltransferase At5g03795-like isoform X1 on chromosome 6. Although the several QTLs identified in the study were all of relatively minor effect, it was concluded that, because the DArT technology involves large numbers of markers and enables many lines to be genotyped simultaneously, it should help the process of manipulating multiple QTLs and so enhance their likely cumulative effect.



Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1878
Author(s):  
Kristýna Kundrátová ◽  
Martin Bartas ◽  
Petr Pečinka ◽  
Ondřej Hejna ◽  
Andrea Rychlá ◽  
...  

Water deficiency is one of the most significant abiotic stresses that negatively affects growth and reduces crop yields worldwide. Most research is focused on model plants and/or crops which are most agriculturally important. In this research, drought stress was applied to two drought stress contrasting varieties of Papaver somniferum (the opium poppy), a non-model plant species, during the first week of its germination, which differ in responses to drought stress. After sowing, the poppy seedlings were immediately subjected to drought stress for 7 days. We conducted a large-scale transcriptomic and proteomic analysis for drought stress response. At first, we found that the transcriptomic and proteomic profiles significantly differ. However, the most significant findings are the identification of key genes and proteins with significantly different expressions relating to drought stress, e.g., the heat-shock protein family, dehydration responsive element-binding transcription factors, ubiquitin E3 ligase, and others. In addition, metabolic pathway analysis showed that these genes and proteins were part of several biosynthetic pathways most significantly related to photosynthetic processes, and oxidative stress responses. A future study will focus on a detailed analysis of key genes and the development of selection markers for the determination of drought-resistant varieties and the breeding of new resistant lineages.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Liang ◽  
Kunhua Wei ◽  
Fan Wei ◽  
Shuangshuang Qin ◽  
Chuanhua Deng ◽  
...  

Abstract Background Sophora tonkinensis Gagnep is a traditional Chinese medical plant that is mainly cultivated in southern China. Drought stress is one of the major abiotic stresses that negatively impacts S. tonkinensis growth. However, the molecular mechanisms governing the responses to drought stress in S. tonkinensis at the transcriptional and posttranscriptional levels are not well understood. Results To identify genes and miRNAs involved in drought stress responses in S. tonkinensis, both mRNA and small RNA sequencing was performed in root samples under control, mild drought, and severe drought conditions. mRNA sequencing revealed 66,476 unigenes, and the differentially expressed unigenes (DEGs) were associated with several key pathways, including phenylpropanoid biosynthesis, sugar metabolism, and quinolizidine alkaloid biosynthesis pathways. A total of 10 and 30 transcription factors (TFs) were identified among the DEGs under mild and severe drought stress, respectively. Moreover, small RNA sequencing revealed a total of 368 miRNAs, including 255 known miRNAs and 113 novel miRNAs. The differentially expressed miRNAs and their target genes were involved in the regulation of plant hormone signal transduction, the spliceosome, and ribosomes. Analysis of the regulatory network involved in the response to drought stress revealed 37 differentially expressed miRNA-mRNA pairs. Conclusion This is the first study to simultaneously profile the expression patterns of mRNAs and miRNAs on a genome-wide scale to elucidate the molecular mechanisms of the drought stress responses of S. tonkinensis. Our results suggest that S. tonkinensis implements diverse mechanisms to modulate its responses to drought stress.



2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Soon-Wook Kwon ◽  
Mijeong Kim ◽  
Hijin Kim ◽  
Joohyun Lee

Through a comparative shotgun quantitative proteomics analysis inBrassica rapa(inbred line Chiifu), total of 3,009 nonredundant proteins were identified with a false discovery rate of 0.01 in 3-week-old plants subjected to dehydration treatment for 0, 24, and 48 h, plants subjected to drought stress. Ribulose-bisphosphate carboxylases, chlorophyll a/b-binding protein, and light harvesting complex in photosystem II were highly abundant proteins in the leaves and accounted for 9%, 2%, and 4%, respectively, of the total identified proteins. Comparative analysis of the treatments enabled detection of 440 differentially expressed proteins during dehydration. The results of clustering analysis, gene ontology (GO) enrichment analysis, and analysis of composite expression profiles of functional categories for the differentially expressed proteins indicated that drought stress reduced the levels of proteins associated with photosynthesis and increased the levels of proteins involved in catabolic processes and stress responses. We observed enhanced expression of many proteins involved in osmotic stress responses and proteins with antioxidant activities. Based on previously reported molecular functions, we propose that the following five differentially expressed proteins could provide target genes for engineering drought resistance in plants: annexin, phospholipase D delta, sDNA-binding transcriptional regulator, auxin-responsive GH3 family protein, and TRAF-like family protein.



Sign in / Sign up

Export Citation Format

Share Document