scholarly journals Candida auris: multi-omics signature of an emerging and multidrug-resistant pathogen

2019 ◽  
Author(s):  
Daniel Zamith-Miranda ◽  
Heino M. Heyman ◽  
Levi G. Cleare ◽  
Sneha Couvillion ◽  
Geremy Clair ◽  
...  

AbstractCandida auris is a recently described pathogenic fungus that is causing invasive outbreaks on all continents. The fungus is of high concern given the numbers of multidrug-resistant strains that have been isolated in distinct sites across the globe. The fact that its diagnosis is still problematic suggests that the spreading of the pathogen remains underestimated. Notably, the molecular mechanisms of virulence and antifungal resistance employed by this new species are largely unknown. In the present work, we compared two clinical isolates of C. auris with distinct drug susceptibility profiles and a Candida albicans reference strain using a multi-omics approach. Our results show that, despite the distinct drug-resistance profile, both C. auris strains appear to be very similar, albeit with a few notable differences. However, when compared to C. albicans both C. auris strains have major differences regarding their carbon utilization and downstream lipid and protein content, suggesting a multi-factorial mechanism of drug resistance. The molecular profile displayed by C. auris helps to explain the antifungal resistance and virulence phenotypes of this new emerging pathogen.ImportanceCandida auris was firstly described in Japan in 2009 and has now been the cause of significant outbreaks across the globe. The high number of isolates that are resistant to one or more antifungals, as well as the high mortality rates from patients with bloodstream infections, has caught the attention of the medical mycology, infectious disease and public health communities to this pathogenic fungus. In the current work, we performed a broad multi-omics approach on two clinical isolates isolated in New York, the most affected area in the USA and found that the omic profile of C. auris differs significantly from C. albicans. Besides our insights into C. auris carbon utilization and lipid and protein content, we believe that the availability of these data will enhance our ability to combat this rapidly emerging pathogenic yeast.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Daniel Zamith-Miranda ◽  
Heino M. Heyman ◽  
Levi G. Cleare ◽  
Sneha P. Couvillion ◽  
Geremy C. Clair ◽  
...  

ABSTRACT Candida auris is a recently described pathogenic fungus that is causing invasive outbreaks on all continents. The fungus is of high concern given the numbers of multidrug-resistant strains that have been isolated in distinct sites across the globe. The fact that its diagnosis is still problematic suggests that the spreading of the pathogen remains underestimated. Notably, the molecular mechanisms of virulence and antifungal resistance employed by this new species are largely unknown. In the present work, we compared two clinical isolates of C. auris with distinct drug susceptibility profiles and a Candida albicans reference strain using a multi-omics approach. Our results show that, despite the distinct drug resistance profile, both C. auris isolates appear to be very similar, albeit with a few notable differences. However, compared to C. albicans both C. auris isolates have major differences regarding their carbon utilization and downstream lipid and protein content, suggesting a multifactorial mechanism of drug resistance. The molecular profile displayed by C. auris helps to explain the antifungal resistance and virulence phenotypes of this new emerging pathogen. IMPORTANCE Candida auris was first described in Japan in 2009 and has now been the cause of significant outbreaks across the globe. The high number of isolates that are resistant to one or more antifungals, as well as the high mortality rates from patients with bloodstream infections, has attracted the attention of the medical mycology, infectious disease, and public health communities to this pathogenic fungus. In the current work, we performed a broad multi-omics approach on two clinical isolates isolated in New York, the most affected area in the United States and found that the omic profile of C. auris differs significantly from C. albicans. In addition to our insights into C. auris carbon utilization and lipid and protein content, we believe that the availability of these data will enhance our ability to combat this rapidly emerging pathogenic yeast.



mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Ryan Kean ◽  
Gordon Ramage

ABSTRACT The enigmatic yeast Candida auris has emerged over the last decade and rapidly penetrated our consciousness. The global threat from this multidrug-resistant yeast has generated a call to arms from within the medical mycology community. Over the past decade, our understanding of how this yeast has spread globally, its clinical importance, and how it tolerates and resists antifungal agents has expanded. This review highlights the clinical importance of antifungal resistance in C. auris and explores our current understanding of the mechanisms associated with azole, polyene, and echinocandin resistance. We also discuss the impact of phenotypic tolerance, with particular emphasis on biofilm-mediated resistance, and present new pipelines of antifungal drugs that promise new hope in the management of C. auris infection.



2020 ◽  
Vol 21 (4) ◽  
pp. 365-373 ◽  
Author(s):  
Sweety Dahiya ◽  
Anil K. Chhillar ◽  
Namita Sharma ◽  
Pooja Choudhary ◽  
Aruna Punia ◽  
...  

The existence of the multi-drug resistant (MDR) pathogenic fungus, Candida auris came to light in 2009. This particular organism is capable of causing nosocomial infections in immunecompromised persons. This pathogen is associated with consistent candidemia with high mortality rate and presents a serious global health threat. Whole genome sequence (WGS) investigation detected powerful phylogeographic Candida auris genotypes which are specialized to particular geological areas indicating dissemination of particular genotype among provinces. Furthermore, this organism frequently exhibits multidrug-resistance and displays an unusual sensitivity profile. Identification techniques that are commercialized to test Candida auris often show inconsistent results and this misidentification leads to treatment failure which complicates the management of candidiasis. Till date, Candida auris has been progressively recorded from several countries and therefore its preventive control measures are paramount to interrupt its transmission. In this review, we discussed prevalence, biology, drug-resistance phenomena, virulence factors and management of Candida auris infections.



Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 461
Author(s):  
Roberto Vazquez-Munoz ◽  
Fernando D. Lopez ◽  
Jose L. Lopez-Ribot

Candida auris is an emergent multidrug-resistant pathogenic yeast, which forms biofilms resistant to antifungals, sanitizing procedures, and harsh environmental conditions. Antimicrobial nanomaterials represent an alternative to reduce the spread of pathogens—including yeasts—regardless of their drug-resistant profile. Here we have assessed the antimicrobial activity of easy-to-synthesize bismuth nanoparticles (BiNPs) against the emergent multidrug-resistant yeast Candida auris, under both planktonic and biofilm growing conditions. Additionally, we have examined the effect of these BiNPs on cell morphology and biofilm structure. Under planktonic conditions, BiNPs MIC values ranged from 1 to 4 µg mL−1 against multiple C. auris strains tested, including representatives of all different clades. Regarding the inhibition of biofilm formation, the calculated BiNPs IC50 values ranged from 5.1 to 113.1 µg mL−1. Scanning electron microscopy (SEM) observations indicated that BiNPs disrupted the C. auris cell morphology and the structure of the biofilms. In conclusion, BiNPs displayed strong antifungal activity against all strains of C. auris under planktonic conditions, but moderate activity against biofilm growth. BiNPs may potentially contribute to reducing the spread of C. auris strains at healthcare facilities, as sanitizers and future potential treatments. More research on the antimicrobial activity of BiNPs is warranted.



2019 ◽  
Vol 21 (2) ◽  
pp. 110-116
Author(s):  
Rajani Shrestha ◽  
N. Nayak ◽  
D.R. Bhatta ◽  
D. Hamal ◽  
S.H. Subramanya ◽  
...  

Clinical isolates of Pseudomonas aeruginosa often exhibit multidrug resistance due to their inherent ability to form biofilms. Drug resistance in Ps. aeruginosa is a major clinical problem, especially in the management of patients with nosocomial infections and those admitted to ICUs with indwelling medical devices. To evaluate the biofilm forming abilities of the clinical isolates of Ps. aeruginosa and to correlate biofilm formation with antibiotic resistance. A total of 90 consecutive isolates of Ps. aeruginosa obtained from various specimens collected from patients visiting the Manipal Teaching Hospital, Pokhara, Nepal between January 2018 - October 2018 were studied. Isolates were identified by standard microbiological methods. Antibiotic susceptibility testing was performed by Kirby-Bauer disc diffusion method. All the isolates were tested for their biofilm forming abilities by employing the tissue culture plate assay. Of the 90 Ps. aeruginosa isolates, maximum i.e 42 (46.6%) were from patients in the age group of > 50 years. Majority (30; 33.3%) of the isolates were obtained from sputum samples. However, percentage isolation from other specimens like urine, endotracheal tube (ETT), pus, eye specimens and blood were 18.9%, 16.7%, 16.7%, 7.8% and 6.7% respectively. All the isolates were sensitive to polymixin B and colistin, 91.1% of the organisms were sensitive to imipenem, and more than 80% to aminoglycosides (80% to gentamicin, 83.3% to amikacin). A total of 29 (32.2%) organisms were biofilm producers. Maximum numbers of biofilm producing strains were obtained from ETT (8 of 15; 53.3%), pus (8 of 15; 53.3%) and blood (2 of 6; 33.3%) i.e from all invasive sites. None of the isolates from noninvasive specimens such as conjunctival swabs were biofilm positive. Significantly higher numbers of biofilm producers (23 of 29; 79.3%) were found to be multidrug resistant as compared to non-biofilm (6 of 61; 9.8%) producers (p=0.000). Ps. aeruginosa colonization leading to biofilm formation in deep seated tissues and on indwelling devices is a therapeutic challenge as majority of the isolates would be recalcitrant to commonly used antipseudomonal drugs. Effective monitoring of drug resistance patterns in all Pseudomonas clinical isolates should be a prerequisite for successful patient management.



2019 ◽  
Author(s):  
Michael H. Woodworth ◽  
David Dynerman ◽  
Emily D. Crawford ◽  
Lucy M. Li ◽  
Sarah B. Doernberg ◽  
...  

ABSTRACTCandida auris is an emerging multidrug-resistant yeast with high mortality. We report the sentinel C. auris case on the United States West Coast in a patient who relocated from India. We identified close phylogenetic relatedness to the South Asia clade and ERG11 Y132F and FKS1 S639Y mutations potentially explaining antifungal resistance.



2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Brittany O’Brien ◽  
Sudha Chaturvedi ◽  
Vishnu Chaturvedi

ABSTRACT Since 2016, New York hospitals and health care facilities have faced an unprecedented outbreak of the pathogenic yeast Candida auris. We tested over 1,000 C. auris isolates from affected facilities and found high resistance to fluconazole (MIC > 256 mg/liter) and variable resistance to other antifungal drugs. Therefore, we tested if two-drug combinations are effective in vitro against multidrug-resistant C. auris. Broth microdilution antifungal combination plates were custom manufactured by TREK Diagnostic System. We used 100% inhibition endpoints for the drug combination as reported earlier for the intra- and interlaboratory agreements against Candida species. The results were derived from 12,960 readings, for 15 C. auris isolates tested against 864 two-drug antifungal combinations for nine antifungal drugs. Flucytosine (5FC) at 1.0 mg/liter potentiated the most combinations. For nine C. auris isolates resistant to amphotericin B (AMB; MIC ≥ 2.0 mg/liter), AMB-5FC (0.25/1.0 mg/liter) yielded 100% inhibition. Six C. auris isolates resistant to three echinocandins (anidulafungin [AFG], MIC ≥ 4.0 mg/liter; caspofungin [CAS], MIC ≥ 2.0 mg/liter; and micafungin [MFG], MIC ≥ 4.0 mg/liter) were 100% inhibited by AFG-5FC and CAS-5FC (0.0078/1 mg/liter) and MFG-5FC (0.12/1 mg/liter). None of the combinations were effective for C. auris 18-1 and 18-13 (fluconazole [FLC] > 256 mg/liter, 5FC > 32 mg/liter) except MFG-5FC (0.1/0.06 mg/liter). Thirteen isolates with a high voriconazole (VRC) MIC (>2 mg/liter) were 100% inhibited by the VRC-5FC (0.015/1 mg/liter). The simplified two-drug combination susceptibility test format would permit laboratories to provide clinicians and public health experts with additional data to manage multidrug-resistant C. auris.



2017 ◽  
Vol 55 (10) ◽  
pp. 2996-3005 ◽  
Author(s):  
Rory M. Welsh ◽  
Meghan L. Bentz ◽  
Alicia Shams ◽  
Hollis Houston ◽  
Amanda Lyons ◽  
...  

ABSTRACTThe emerging multidrug-resistant pathogenic yeastCandida aurisrepresents a serious threat to global health. Unlike most otherCandidaspecies, this organism appears to be commonly transmitted within health care facilities and causes health care-associated outbreaks. To better understand the epidemiology of this emerging pathogen, we investigated the ability ofC. auristo persist on plastic surfaces common in health care settings compared with that ofCandida parapsilosis, a species known to colonize the skin and plastics. Specifically, we compiled comparative and quantitative data essential to understanding the vehicles of spread and the ability of both species to survive and persist on plastic surfaces under controlled conditions (25°C and 57% relative humidity), such as those found in health care settings. When a test suspension of 104cells was applied and dried on plastic surfaces,C. aurisremained viable for at least 14 days andC. parapsilosisfor at least 28 days, as measured by CFU. However, survival measured by esterase activity was higher forC. auristhanC. parapsilosisthroughout the 28-day study. Given the notable length of timeCandidaspecies survive and persist outside their host, we developed methods to more effectively cultureC. aurisfrom patients and their environment. Using our enrichment protocol, public health laboratories and researchers can now readily isolateC. aurisfrom complex microbial communities (such as patient skin, nasopharynx, and stool) as well as environmental biofilms, in order to better understand and preventC. auriscolonization and transmission.



Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 150 ◽  
Author(s):  
Lewis Marquez ◽  
Cassandra L. Quave

Antimicrobial resistance is a global issue that threatens the effective practice of modern medicine and global health. The emergence of multidrug-resistant (MDR) fungal strains of Candida auris and azole-resistant Aspergillus fumigatus were highlighted in the Centers for Disease Control and Prevention’s (CDC) 2019 report, Antibiotic Resistance Threats in the United States. Conventional antifungals used to treat fungal infections are no longer as effective, leading to increased mortality. Compounding this issue, there are very few new antifungals currently in development. Plants from traditional medicine represent one possible research path to addressing the issue of MDR fungal pathogens. In this commentary piece, we discuss how medical ethnobotany—the study of how people use plants in medicine—can be used as a guide to identify plant species for the discovery and development of novel antifungal therapies.



Sign in / Sign up

Export Citation Format

Share Document