scholarly journals Prenatal heat stress effects on gestation and postnatal behavior in kid goats

2019 ◽  
Author(s):  
Wellington Coloma-García ◽  
Nabil Mehaba ◽  
Pol Llonch ◽  
Gerardo Caja ◽  
Xavier Such ◽  
...  

AbstractConsequences of heat stress during pregnancy can affect the normal development of the offspring. In the present experiment, 30 Murciano-Granadina dairy goats (41.8 ± 5.7 kg) were exposed to 2 thermal environments varying in temperature-humidity index (THI) from 12 days before mating to 45 days of gestation. The environmental conditions were: gestation thermal-neutral (GTN; THI = 71 ± 3); and gestation heat stress (GHS; THI = 85 ± 3). At 27 ± 4 days old, GTN-born female kids (n = 16) and GHS-born ones (n = 10) were subjected to 2 tests: arena test (AT) and novel object test (NOT), the latter was repeated at 3 months of age. Additionally, 8 months after birth, a subset of growing goats (n = 8) coming from GTN and GHS (16.8 ± 3.4 kg BW) were exposed consecutively to 2 environmental conditions: a basal thermal-neutral period (THI = 72 ± 3) for 7 days, and a heat-stress period (THI = 87 ± 2) for 21 days. In both periods, feeding behavior, resting behavior, other active behaviors (exploring, grooming), thermally-associated behaviors and posture were recorded. The gestation length was shortened by 3 days in GHS goats. In the AT, GHS kids showed a lower number of sniffs (P < 0.01) compared to GTN. In the NOT, GHS kids also tended to show a lower number of sniffs (P = 0.09). During heat exposure, GTN and GHS growing goats spent more time resting as well as exhibited more heat-stress related behaviors such as panting and drinking (P < 0.001); however, no differences were observed between both groups. In conclusion, heat stress during the first third of pregnancy shortened gestation length and influenced the exploratory behavior of the kids in the early life without impact on the behavior during the adulthood when exposed to heat stress.

2013 ◽  
Vol 22 (1-2) ◽  
pp. 37-45 ◽  
Author(s):  
MM Alam ◽  
MA Hashem ◽  
MM Rahman ◽  
MM Hossain ◽  
MR Haque ◽  
...  

The research was conducted to study the effect of heat stress on behavior, some physiological and blood parameters with nine goats of almost similar in age, sex and weight into three groups. Three groups were divided as zero hour (T0), four hours (T4) and eight hours (T8) heat exposure. Temperature–humidity index (THI) value was calculated as 28.17 which indicate the experimental animals were in extreme severe heat stress. Skin and rectal temperature had no significant differences among the treatment groups but respiration/panting and pulse rate were increased with the increased of heat stress from T0 to T8 group (P<0.01).  Significant difference was found in standing time and lying time (P<0.01) in experimental groups. There were significant changes (P<0.01) in number of urination and defecation per hour but no significant changes was found in duration per urination in heat treated groups. The amount of RBC, PCV%, Hb%, WBC were increased with the increased of heat stress (P<0.01). Neutrophil, eosinophil, lymphocyte and monocyte numbers increased significantly (P<0.01) in heat treated groups.  It can be concluded that heat stress had significant changes on some behavioral, physiological and blood parameters of goat.DOI: http://dx.doi.org/10.3329/pa.v22i1-2.16465 Progress. Agric. 22(1 & 2): 37 - 45, 2011  


2021 ◽  
Vol 24 (2) ◽  
pp. 24-36
Author(s):  
Lazoumi Ouarfli ◽  
Abdelmadjid Chehma

Abstract The objective is to study the effect of heat stress on milk yield (MY) relative to milking records (n=18178) of native Holsteins (n=187), in the region of Ghardaia, according to periods of HS, using the temperature-humidity index (THI). With THI >72 during 07 months in the study area, which significantly (P<0.001) decrease the MY (-15.5% corresponding to 21.73 kg). Also, calving periods led to a significant drop (P < 0.001) in overall MY (7030.35 kg) of the order of (-14.6%), and over the lactation length (353.43 d), which explains 41% of the variations in MY. In addition, the non-significant effect (P=0.212) of the lactation range on the increase in MY, moreover, the lactation length shows a non-significant (P = 0.108) decrease (-4.68%) during heat stress (HS). Furthermore, the significant effect (P <0.001) of the interaction (Milking frequency × THI) on MY, when THI variates from < 74 to > 84, with regression of (-16.82% and -08.82%) of the MF (2X and 3X), respectively. Again, the NH cow is less sensitive to hyperthermia, so THI explains only 2% of the variation in MY levels. Thus, NH in arid regions have the ability to acclimatize to Saharan environmental conditions.


2014 ◽  
Vol 12 (1) ◽  
pp. 91-94 ◽  
Author(s):  
MS Rana ◽  
MA Hashem ◽  
MN Sakib ◽  
A Kumar

The research was conducted to study the effect of heat stress on blood parameters in indigenous sheep. Nine sheep were divided into three groups which were almost similar in age, sex and weight. Three groups were divided as zero hour (T0), four hours (T4) and eight hours (T8) heat exposure to direct sunlight. During experimental period temperature–humidity index (THI) value was calculated as 27.09 which indicate T4 and T8 groups were subjected to heat stress condition for at least four hours and eight hours respectively every day. The amount of red blood cell (RBC), hemoglobin (Hb%) and packed cell volume (PCV%) were increased significantly (p<0.05) with the increase of heat stress but the amount of white blood cell (WBC) had no significant difference (P>0.05) among the treatment groups. It can be concluded that heat stress had significant changes on some blood parameters in indigenous sheep. DOI: http://dx.doi.org/10.3329/jbau.v12i1.21253 J. Bangladesh Agril. Univ. 12(1): 91-94, June 2014


1999 ◽  
Vol 132 (3) ◽  
pp. 351-359 ◽  
Author(s):  
R. M. DIXON ◽  
R. THOMAS ◽  
J. H. G. HOLMES

Intake, digestion and growth were examined in young Merino×Border Leicester wether sheep held for 44 days in either cool (13–15°C, thermal humidity index 56–58) or hot (32–40°C, 50–70% relative humidity, thermal humidity index minimum 83–84, maximum 83–88) environments. The sheep were offered diets of medium quality hay ad libitum alone (Con) or supplemented with either 22 g air-dry/kg metabolic liveweight (W0·75) of barley grain fortified with urea and sulphur (Bar/N) or 10 g air-dry/kg W0·75 of fishmeal (FM). Intake of the Con diet by the sheep in the cool environment was high at 79 g DM/kg W0·75 per day. Sheep in the hot environment had higher rectal temperatures and higher respiration rates (40·1°C v. 39·2°C, 196 v. 56 respirations/min respectively, P<0·01). The hot environment reduced (P<0·05) total dry matter (DM) intake, estimated metabolizable energy (ME) intake, liveweight (LW) gain and nitrogen (N) balance. The provision of supplements did not change total DM intake, but increased (P<0·05) organic matter digestibility, estimated ME intake, LW gain and N balance. Wool growth was increased much more by the FM than by the Bar/N supplement, indicating that the supply of absorbed amino acids was increased substantially by the FM supplement. Neither voluntary intake nor productivity were influenced by any interactions between the thermal environments and the balance of nutrients provided by the diets. In conclusion, in these young sheep consuming a high intake of a medium quality roughage diet, moderate heat stress reduced intake and growth but did not affect the relative responses of the sheep to supplements providing principally fermentable ME or a similar amount of fermentable ME and additional metabolizable protein.


2013 ◽  
Vol 42 (1) ◽  
pp. 57-61 ◽  
Author(s):  
MA Hashem ◽  
MM Hossain ◽  
MS Rana ◽  
MM Hossain ◽  
MS Islam ◽  
...  

The research was conducted to study the effect of heat stress on blood parameter, carcass characteristics and meat quality of the Black Bengal goat. Nine goats were randomly and equally divided into three groups having almost same age and weight. Three groups were divided as zero hour (T0), four hours (T4) and eight hours (T8) of heat exposure. The T0 group were not exposed to heat stress, the T4 and T8 group were exposed to heat by keeping them at outside for 4 (four) hours and 8 (eight) hours from 9.00 AM to 1.00 PM and from 9.00 AM to 5.00 PM, respectively. Temperature–humidity index (THI) was calculated as 26.88 indicating all the experimental animals were in extreme severe heat stress. The blood parameter such as RBC, PCV%, Hb%, WBC was significantly (p<0.01) higher in T8 group than those of T4 and T0 groups. There was also significant (p<0.05) effect of heat stress on pH of the meat from different groups of the Black Bengal goats. By-products e.g., blood, pluck, spleen and kidney, and cooking loss were significantly (p<0.01) increased with the increase of the heat, but no significant differences were observed for pre-slaughter parameters, carcass weight, drip loss, dressing percentage, and proximate composition of the goat meat for DM, CP and Ash, while the EE significantly (p<0.05) differed among the heat treated groups. Heat stress significantly affected the blood parameter, cooking loss, pH, by-product of goats rather than non heat stressed group. It indicates that heat stress limits the qualitative and quantitative production characteristics of goat meat. DOI: http://dx.doi.org/10.3329/bjas.v42i1.15783 Bang. J. Anim. Sci. 2013. 42 (1): 57-61


2017 ◽  
Vol 15 (2) ◽  
pp. e0403
Author(s):  
Miguel Mellado ◽  
María I. Chávez ◽  
Ulises Macías-Cruz ◽  
Leonel Avendaño-Reyes ◽  
Evaristo Carrillo ◽  
...  

Risk factors for stillbirth were studied in a dairy operation in northern Mexico (25°N). Data set consisted of 29406 full term calving records. Factors affecting stillbirths were analyzed using a step-wise multivariable logistic regression models. The predictive indicators of stillbirth risk were: temperature-humidity index (THI) during pregnancy and at calving, season of calving, calf birth weight, gestation length, semen characteristics (conventional or sexed), gender of calves, hour of calving and type of parturition (normal or dystocic). Throughout the study period, 7.3 (95%, confidence interval= 7.0–7.6) of every 100 calving events had a stillborn calf. Stillborns were higher with severe dystocia compared with non-assisted births (29.0% vs. 6.2%, p<0.0001) and calves with birth weights <35 kg compared with heavier calves at calving (19.3% vs. 2.3%, p<0.0001), and was lower in calves whose gestation length was >278 d compared with calves with shorter gestation periods (2.8% vs. 30.0%, p<0.0001). Cows in a severe state of heat stress prenatally and at birth (THI >83 units) had 1.3 higher risk of stillbirths than cows suffering reduced heat stress (p<0.0001). Evidence for a greater (p<0.001) stillbirth rates in cows with parturitions between 18:00 and 19:00 h compared with cows calving during other hours of the day was found (9.1% vs. 7.1%). Together, these results demonstrate that ameliorating heat stress during the peripartum period is an important management practice to reduce stillbirths in Holstein cows in this warm climate. Additionally, a greater attention of parturition around sunset can lower the current stillbirth rates.


2021 ◽  
pp. 102998
Author(s):  
Bianca Vilela Pires ◽  
Nedenia Bonvino Stafuzza ◽  
Luara Afonso de Freitas ◽  
Maria Eugênia Zerlotti Mercadante ◽  
Ester Silveira Ramos ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Jang-Hoon Jo ◽  
Jalil Ghassemi Nejad ◽  
Dong-Qiao Peng ◽  
Hye-Ran Kim ◽  
Sang-Ho Kim ◽  
...  

This study aims to characterize the influence of short-term heat stress (HS; 4 day) in early lactating Holstein dairy cows, in terms of triggering blood metabolomics and parameters, milk yield and composition, and milk microRNA expression. Eight cows (milk yield = 30 ± 1.5 kg/day, parity = 1.09 ± 0.05) were homogeneously housed in environmentally controlled chambers, assigned into two groups with respect to the temperature humidity index (THI) at two distinct levels: approximately ~71 (low-temperature, low-humidity; LTLH) and ~86 (high-temperature, high-humidity; HTHH). Average feed intake (FI) dropped about 10 kg in the HTHH group, compared with the LTLH group (p = 0.001), whereas water intake was only numerically higher (p = 0.183) in the HTHH group than in the LTLH group. Physiological parameters, including rectal temperature (p = 0.001) and heart rate (p = 0.038), were significantly higher in the HTHH group than in the LTLH group. Plasma cortisol and haptoglobin were higher (p < 0.05) in the HTHH group, compared to the LTLH group. Milk yield, milk fat yield, 3.5% fat-corrected milk (FCM), and energy-corrected milk (ECM) were lower (p < 0.05) in the HTHH group than in the LTLH group. Higher relative expression of milk miRNA-216 was observed in the HTHH group (p < 0.05). Valine, isoleucine, methionine, phenylalanine, tyrosine, tryptophan, lactic acid, 3-phenylpropionic acid, 1,5-anhydro-D-sorbitol, myo-inositol, and urea were decreased (p < 0.05). These results suggest that early lactating cows are more vulnerable to short-term (4 day) high THI levels—that is, HTHH conditions—compared with LTLH, considering the enormous negative effects observed in measured blood metabolomics and parameters, milk yield and compositions, and milk miRNA-216 expression.


2021 ◽  
Vol 13 (5) ◽  
pp. 2836
Author(s):  
Khawar Shahzad ◽  
Muhammad Sultan ◽  
Muhammad Bilal ◽  
Hadeed Ashraf ◽  
Muhammad Farooq ◽  
...  

Poultry are one of the most vulnerable species of its kind once the temperature-humidity nexus is explored. This is so because the broilers lack sweat glands as compared to humans and undergo panting process to mitigate their latent heat (moisture produced in the body) in the air. As a result, moisture production inside poultry house needs to be maintained to avoid any serious health and welfare complications. Several strategies such as compressor-based air-conditioning systems have been implemented worldwide to attenuate the heat stress in poultry, but these are not economical. Therefore, this study focuses on the development of low-cost and environmentally friendly improved evaporative cooling systems (DEC, IEC, MEC) from the viewpoint of heat stress in poultry houses. Thermodynamic analysis of these systems was carried out for the climatic conditions of Multan, Pakistan. The results appreciably controlled the environmental conditions which showed that for the months of April, May, and June, the decrease in temperature by direct evaporative cooling (DEC), indirect evaporative cooling (IEC), and Maisotsenko-Cycle evaporative cooling (MEC) systems is 7–10 °C, 5–6.5 °C, and 9.5–12 °C, respectively. In case of July, August, and September, the decrease in temperature by DEC, IEC, and MEC systems is 5.5–7 °C, 3.5–4.5 °C, and 7–7.5 °C, respectively. In addition, drop in temperature-humidity index (THI) values by DEC, IEC, and MEC is 3.5–9 °C, 3–7 °C, and 5.5–10 °C, respectively for all months. Optimum temperature and relative humidity conditions are determined for poultry birds and thereby, systems’ performance is thermodynamically evaluated for poultry farms from the viewpoint of THI, temperature-humidity-velocity index (THVI), and thermal exposure time (ET). From the analysis, it is concluded that MEC system performed relatively better than others due to its ability of dew-point cooling and achieved THI threshold limit with reasonable temperature and humidity indexes.


Author(s):  
Oriol Abellán-Aynés ◽  
Pedro Manonelles ◽  
Fernando Alacid

(1) Background: Research on heart rate variability has increased in recent years and the temperature has not been controlled in some studies assessing repeated measurements. This study aimed to analyze how heart rate variability may change based on environmental temperature during measurement depending on parasympathetic and sympathetic activity variations. (2) Methods: A total of 22 volunteers participated in this study divided into an experimental (n = 12) and control group (n = 10). Each participant was assessed randomly under two different environmental conditions for the experimental group (19 °C and 35 °C) and two identical environmental conditions for the control group (19 °C). During the procedure, heart rate variability measurements were carried out for 10 min. (3) Results: Significantly changes were observed for time and frequency domains as well as Poincaré plot variables after heat exposure (p < 0.05). These findings were not observed in the control group, whose conditions between measurements did not change. (4) Conclusions: The reduction of heart rate variability due to exposure to hot conditions appears to be produced mostly by a parasympathetic withdrawal rather than a sympathetic activation. Therefore, if consecutive measurements have to be carried out, these should always be done under the same temperature conditions.


Sign in / Sign up

Export Citation Format

Share Document