scholarly journals Loss of a novel striated muscle-enriched mitochondrial protein Coq10a enhances postnatal cardiac hypertrophic growth

2019 ◽  
Author(s):  
Kentaro Hirose ◽  
Steven Chang ◽  
Hongyao Yu ◽  
Jiajia Wang ◽  
Emanuele Barca ◽  
...  

AbstractPostnatal mammalian cardiomyocytes undergo a major transition from hyperplasia (increases in cell numbers) to hypertrophy (expansion in cell size). This process is accompanied by rapid mitochondrial biogenesis and metabolic switches to meet the demand of increased cardiac output. Although most mitochondrial components express ubiquitously, recent transcriptomic and proteomic analyses have discovered numerous tissue-specific mitochondrial proteins whose physiological functions are largely unknown. Here we report that a highly evolutionarily conserved mitochondrial protein Coq10a is predominantly expressed in mammalian cardiac and skeletal muscles, and is highly up-regulated around birth in a thyroid hormone-dependent manner. Deletion of Coq10a by CRISPR/Cas9 leads to enhanced cardiac growth after birth. Surprisingly, adult Coq10a mutant mice maintain the hypertrophic heart phenotype with increased levels of coenzyme Q (CoQ) per cardiomyocyte, preserved cardiac contractile function and mitochondrial respiration, which contrasts with reported mice and humans with mutations in other Coq family genes. Further RNA-seq analysis and mitochondrial characterization suggest an increase of mitochondrial biogenesis in the Coq10a mutant heart as a possible consequence of Peroxisome proliferator-activated receptor Gamma Coactivator 1-alpha (PGC1α) activation, consistent with a recent intriguing report that CoQ may function as a natural ligand and partial agonist of Peroxisome Proliferator-Activated Receptor (PPAR) α/γ. Taken together, our study reveals a previously unknown function of a novel striated muscle-enriched mitochondrial protein Coq10a in regulating postnatal heart growth.

2007 ◽  
Vol 32 (5) ◽  
pp. 840-845 ◽  
Author(s):  
David C. Wright

Regularly performed aerobic exercise leads to increases in skeletal muscle mitochondria and glucose transporter 4 (GLUT4) protein content, resulting in an enhanced capacity to oxidize substrates and improvements in insulin- and contraction-mediated glucose uptake. Although the specific mechanisms governing these adaptive responses have not been fully elucidated, accumulating evidence suggests that the increase in cytosolic Ca2+ that occurs with each wave of sacrolemmal depolarization is a key component of these processes. Treating L6 muscle cells with agents that increase Ca2+ without causing reductions in ~P or the activation of 5′-AMP-activated protein kinase leads to increases in GLUT4 and mitochondrial protein contents. This effect is likely controlled through calcium/calmodulin-dependent protein kinase (CaMK), since KN93, a specific CaMK inhibitor, blocks these adaptive responses. Recent findings provide evidence that the activation of p38 mitogen-activated protein kinase (MAPK) is involved in the pathway through which Ca2+/CaMK mediates mitochondrial and GLUT4 biogenesis. p38 MAPK initiates GLUT4 and mitochondrial biogenesis through the activation      of transcription factors and transcriptional coactivators such as myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). Subsequent increases in the content of these proteins further enhance Ca2+-induced GLUT4 and mitochondrial biogenesis. Since decreases in mitochondrial and GLUT4 contents are associated with skeletal muscle insulin resistance, an understanding of the mechanisms by which these processes can be normalized will aid in the prevention and treatment of type 2 diabetes.


2020 ◽  
Vol 318 (2) ◽  
pp. F322-F328 ◽  
Author(s):  
Pallavi Bhargava ◽  
Jaroslav Janda ◽  
Rick G. Schnellmann

Previous studies have shown that cGMP increases mitochondrial biogenesis (MB). Our laboratory has determined that formoterol and LY344864, agonists of the β2-adrenergic receptor and 5-HT1F receptor, respectively, signal MB in a soluble guanylyl cyclase (sGC)-dependent manner. However, the pathway between cGMP and MB produced by these pharmacological agents in renal proximal tubule cells (RPTCs) and the kidney has not been determined. In the present study, we showed that treatment of RPTCs with formoterol, LY344864, or riociguat, a sGC stimulator, induces MB through protein kinase G (PKG), a target of cGMP, and p38, an associated downstream target of PKG and a regulator of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in RPTCs. We also examined if p38 plays a role in PGC-1α phosphorylation in vivo. Administration of l-skepinone, a potent and specific inhibitor of p38α and p38β, to naïve mice inhibited phosphorylated PGC-1α localization in the nuclear fraction of the renal cortex. Taken together, we demonstrated a pathway, sGC/cGMP/PKG/p38/PGC-1α, for pharmacological induction of MB and the importance of p38 in this pathway.


2018 ◽  
Vol 314 (1) ◽  
pp. C62-C72 ◽  
Author(s):  
Avigail T. Erlich ◽  
Diane M. Brownlee ◽  
Kaitlyn Beyfuss ◽  
David A. Hood

The mitochondrial network in muscle is controlled by the opposing processes of mitochondrial biogenesis and mitophagy. The coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) regulates biogenesis, while the transcription of mitophagy-related genes is controlled by transcription factor EB (TFEB). PGC-1α activation is induced by exercise; however, the effect of exercise on TFEB is not fully known. We investigated the interplay between PGC-1α and TFEB on mitochondria in response to acute contractile activity in C2C12 myotubes and following exercise in wild-type and PGC-1α knockout mice. TFEB nuclear localization was increased by 1.6-fold following 2 h of acute myotube contractile activity in culture, while TFEB transcription was also simultaneously increased by twofold to threefold. Viral overexpression of TFEB in myotubes increased PGC-1α and cytochrome- c oxidase-IV gene expression. In wild-type mice, TFEB translocation to the nucleus increased 2.4-fold in response to acute exercise, while TFEB transcription, assessed through the electroporation of a TFEB promoter construct, was elevated by fourfold. These exercise effects were dependent on the presence of PGC-1α. Our data indicate that acute exercise provokes TFEB expression and activation in a PGC-1α-dependent manner and suggest that TFEB, along with PGC-1α, is an important regulator of mitochondrial biogenesis in muscle as a result of exercise.


Oncogene ◽  
2021 ◽  
Vol 40 (13) ◽  
pp. 2355-2366
Author(s):  
Laura C. A. Galbraith ◽  
Ernest Mui ◽  
Colin Nixon ◽  
Ann Hedley ◽  
David Strachan ◽  
...  

AbstractPeroxisome Proliferator-Activated Receptor Gamma (PPARG) is one of the three members of the PPAR family of transcription factors. Besides its roles in adipocyte differentiation and lipid metabolism, we recently demonstrated an association between PPARG and metastasis in prostate cancer. In this study a functional effect of PPARG on AKT serine/threonine kinase 3 (AKT3), which ultimately results in a more aggressive disease phenotype was identified. AKT3 has previously been shown to regulate PPARG co-activator 1 alpha (PGC1α) localisation and function through its action on chromosome maintenance region 1 (CRM1). AKT3 promotes PGC1α localisation to the nucleus through its inhibitory effects on CRM1, a known nuclear export protein. Collectively our results demonstrate how PPARG over-expression drives an increase in AKT3 levels, which in turn has the downstream effect of increasing PGC1α localisation within the nucleus, driving mitochondrial biogenesis. Furthermore, this increase in mitochondrial mass provides higher energetic output in the form of elevated ATP levels which may fuel the progression of the tumour cell through epithelial to mesenchymal transition (EMT) and ultimately metastasis.


2021 ◽  
pp. 1-9
Author(s):  
Fan Ye ◽  
Anshi Wu

Silent information-regulated transcription factor 1 (SIRT1) is the most prominent and widely studied member of the sirtuins (a family of mammalian class III histone deacetylases). It is a nuclear protein, and the deacetylation of the peroxisome proliferator-activated receptor coactivator-1 has been extensively implicated in metabolic control and mitochondrial biogenesis and is the basis for studies into its involvement in caloric restriction and its effects on lifespan. The present study discusses the potentially protective mechanism of SIRT1 in the regulation of the mitochondrial biogenesis and autophagy involved in the modulation of Alzheimer’s disease, which may be correlated with the role of SIRT1 in affecting neuronal morphology, learning, and memory during development; regulating metabolism; counteracting stress responses; and maintaining genomic stability. Drugs that activate SIRT1 may offer a promising approach to treating Alzheimer’s disease


Author(s):  
Serena Stopponi ◽  
Yannick Fotio ◽  
Carlo Cifani ◽  
Hongwu Li ◽  
Carolina L Haass-Koffler ◽  
...  

Abstract Background and aims Andrographis paniculata is an annual herbaceous plant which belongs to the Acanthaceae family. Extracts from this plant have shown hepatoprotective, anti-inflammatory and antidiabetic properties, at least in part, through activation of the nuclear receptor Peroxisome Proliferator-Activated Receptor-gamma (PPAR γ). Recent evidence has demonstrated that activation of PPARγ reduces alcohol drinking and seeking in Marchigian Sardinian (msP) alcohol-preferring rats. Methods The present study evaluated whether A. paniculata reduces alcohol drinking and relapse in msP rats by activating PPARγ. Results Oral administration of an A. paniculata dried extract (0, 15, 150 mg/kg) lowered voluntary alcohol consumption in a dose-dependent manner and achieved ~65% reduction at the dose of 450 mg/kg. Water and food consumption were not affected by the treatment. Administration of Andrographolide (5 and 10 mg/kg), the main active component of A. paniculata, also reduced alcohol drinking. This effect was suppressed by the selective PPARγ antagonist GW9662. Subsequently, we showed that oral administration of A. paniculata (0, 150, 450 mg/kg) prevented yohimbine- but not cues-induced reinstatement of alcohol seeking. Conclusions Results point to A. paniculata-mediated PPARγactivation as a possible therapeutic strategy to treat alcohol use disorder.


2021 ◽  
Vol 22 (8) ◽  
pp. 3829
Author(s):  
Mohamed F. Dora ◽  
Nabil M. Taha ◽  
Mohamed A. Lebda ◽  
Aml E. Hashem ◽  
Mohamed S. Elfeky ◽  
...  

Iron oxide nanoparticle (IONP) therapy has diverse health benefits but high doses or prolonged therapy might induce oxidative cellular injuries especially in the brain. Therefore, we conducted the current study to investigate the protective role of quercetin supplementation against the oxidative alterations induced in the brains of rats due to IONPs. Forty adult male albino rats were allocated into equal five groups; the control received a normal basal diet, the IONP group was intraperitoneally injected with IONPs of 50 mg/kg body weight (B.W.) and quercetin-treated groups had IONPs + Q25, IONPs + Q50 and IONPs + Q100 that were orally supplanted with quercetin by doses of 25, 50 and 100 mg quercetin/kg B.W. daily, respectively, administrated with the same dose of IONPs for 30 days. IONPs induced significant increases in malondialdehyde (MDA) and significantly decreased reduced glutathione (GSH) and oxidized glutathione (GSSG). Consequently, IONPs significantly induced severe brain tissue injuries due to the iron deposition leading to oxidative alterations with significant increases in brain creatine phosphokinase (CPK) and acetylcholinesterase (AChE). Furthermore, IONPs induced significant reductions in brain epinephrine, serotonin and melatonin with the downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial transcription factor A (mtTFA) mRNA expressions. IONPs induced apoptosis in the brain monitored by increases in caspase 3 and decreases in B-cell lymphoma 2 (Bcl2) expression levels. Quercetin supplementation notably defeated brain oxidative damages and in a dose-dependent manner. Therefore, quercetin supplementation during IONPs is highly recommended to gain the benefits of IONPs with fewer health hazards.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1025
Author(s):  
Ahmed Alalaiwe ◽  
Jia-You Fang ◽  
Hsien-Ju Lee ◽  
Chun-Hui Chiu ◽  
Ching-Yun Hsu

Curcumin is a known anti-adipogenic agent for alleviating obesity and related disorders. Comprehensive comparisons of the anti-adipogenic activity of curcumin with other curcuminoids is minimal. This study compared adipogenesis inhibition with curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC), and their underlying mechanisms. We differentiated 3T3-L1 cells in the presence of curcuminoids, to determine lipid accumulation and triglyceride (TG) production. The expression of adipogenic transcription factors and lipogenic proteins was analyzed by Western blot. A significant reduction in Oil red O (ORO) staining was observed in the cells treated with curcuminoids at 20 μM. Inhibition was increased in the order of curcumin < DMC < BDMC. A similar trend was observed in the detection of intracellular TG. Curcuminoids suppressed differentiation by downregulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), leading to the downregulation of the lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). AMP-activated protein kinase α (AMPKα) phosphorylation was also activated by BDMC. Curcuminoids reduced the release of proinflammatory cytokines and leptin in 3T3-L1 cells in a dose-dependent manner, with BDMC showing the greatest potency. BDMC at 20 μM significantly decreased leptin by 72% compared with differentiated controls. Molecular docking computation indicated that curcuminoids, despite having structural similarity, had different interaction positions to PPARγ, C/EBPα, and ACC. The docking profiles suggested a possible interaction of curcuminoids with C/EBPα and ACC, to directly inhibit their expression.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 349
Author(s):  
Rodrigo Prieto-Carrasco ◽  
Fernando E. García-Arroyo ◽  
Omar Emiliano Aparicio-Trejo ◽  
Pedro Rojas-Morales ◽  
Juan Carlos León-Contreras ◽  
...  

The five-sixth nephrectomy (5/6Nx) model is widely used to study the mechanisms involved in chronic kidney disease (CKD) progression. Mitochondrial impairment is a critical mechanism that favors CKD progression. However, until now, there are no temporal studies of the change in mitochondrial biogenesis and dynamics that allow determining the role of these processes in mitochondrial impairment and renal damage progression in the 5/6Nx model. In this work, we determined the changes in mitochondrial biogenesis and dynamics markers in remnant renal mass from days 2 to 28 after 5/6Nx. Our results show a progressive reduction in mitochondrial biogenesis triggered by reducing two principal regulators of mitochondrial protein expression, the peroxisome proliferator-activated receptor-gamma coactivator 1-alpha and the peroxisome proliferator-activated receptor alpha. Furthermore, the reduction in mitochondrial biogenesis proteins strongly correlates with the increase in renal damage markers. Additionally, we found a slow and gradual change in mitochondrial dynamics from fusion to fission, favoring mitochondrial fragmentation at later stages after 5/6Nx. Together, our results suggest that 5/6Nx induces the progressive reduction in mitochondrial mass over time via the decrease in mitochondrial biogenesis factors and a slow shift from mitochondrial fission to fusion; both mechanisms favor CKD progression in the remnant renal mass.


Sign in / Sign up

Export Citation Format

Share Document