scholarly journals Comparison of the Gut Microbiota Composition Between Captive and Wild Roe Deer

2019 ◽  
Author(s):  
Jinyue Liu ◽  
Xue Liang ◽  
Yanhua Liu

ABSTRACTIn this paper, 16S-rRNA gene Illumina HiSeq sequencing was used to analyze the structural diversity of captive and wild roe deer gut flora. The results show that the microbial diversity in the feces of wild roe deer is higher than in that of captive roe deer. Both roe deer have similar flora at the phylum level, but the main genus has significant differences. The microbial group that plays an important role in captive roe deer is Bacteroidetes; in wild roe deer it is Firmicutes. This difference is mainly due to the differences in living environment, diet, and physiological functions of the two groups. In conclusion, our study makes people have a better understanding of the intestinal flora of roe deer. By comparing the intestinal microbial structure differences between captive and wild roe deer, it provides theoretical basis for people to raise captive roe deer and provides reference for the protection of wild roe deer.IMPORTANCEMany studies have shown that large and complex microbes in the gut of humans and non-human animals, intestinal microbes are thought to co-evolve with the host, help the host acquire nutrients, regulate immunity and to help maintain host homeostasis. The roe deer (Capreolus spp.) is a ruminant. Wild roe deer are listed on the List of Terrestrial Wild Animals Protected by the State or Have Important Economic and Scientific Values, wild roe deer is also a Chinese national protected animal under second class protection. However, current research on the gut microbiota of roe deer has not been reported.

Nutrients ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 67 ◽  
Author(s):  
Zenghao Yan ◽  
Hao Wu ◽  
Hongliang Yao ◽  
Wenjun Pan ◽  
Minmin Su ◽  
...  

Rotundic acid (RA) is a major triterpene constituent in the barks of Ilex rotunda Thunb, which have been widely used to make herbal tea for health care in southern China. RA has a variety of bioactivities such as anti-inflammation and lipid-lowering effect. However, little is known about the effects and mechanisms of RA on metabolic disturbance in type 2 diabetes (T2D) and its effect on gut microbiota. A T2D rat model induced by high fat diet (HFD) feeding and low-dose streptozotocin (STZ) injection was employed and RA showed multipronged effects on T2D and its complications, including improving glucolipid metabolism, lowering blood pressure, protecting against cardiovascular and hepatorenal injuries, and alleviating oxidative stress and inflammation. Furthermore, 16s rRNA gene sequencing was carried out on an Illumina HiSeq 2500 platform and RA treatment could restore the gut microbial dysbiosis in T2D rats to a certain extent. RA treatment significantly enhanced the richness and diversity of gut microbiota. At the genus level, beneficial or commensal bacteria Prevotella, Ruminococcus, Leuconostoc and Streptococcus were significantly increased by RA treatment, while RA-treated rats had a lower abundance of opportunistic pathogen Klebsiella and Proteus. Spearman’s correlation analysis showed that the abundances of these bacteria were strongly correlated with various biochemical parameters, suggesting that the improvement of gut microbiota might help to prevent or attenuate T2D and its complication. In conclusion, our findings support RA as a nutraceutical agent or plant foods rich in this compound might be helpful for the alleviation of T2D and its complications through improving gut microbiota.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenxia Zhu ◽  
Yilin Wu ◽  
Hui Liu ◽  
Caini Jiang ◽  
Lili Huo

The gut microbiota is an important regulator for maintaining the organ microenvironment through effects on the gut-vital organs axis. Respiratory tract infections are one of the most widespread and harmful diseases, especially in the last 2 years. Many lines of evidence indicate that the gut microbiota and its metabolites can be considered in therapeutic strategies to effectively prevent and treat respiratory diseases. However, due to the different gut microbiota composition in children compared to adults and the dynamic development of the immature immune system, studies on the interaction between children’s intestinal flora and respiratory infections are still lacking. Here, we describe the changes in the gut microbiota of children with respiratory tract infections and explain the relationship between the microbiota of children with their immune function and disease development. In addition, we will provide perspectives on the direct manipulation of intestinal microbes to prevent or treat pediatric respiratory infections.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lei Chen ◽  
Di Xu ◽  
Jing Zhu ◽  
Shen Wang ◽  
Mi Liu ◽  
...  

AbstractThe short-faced moles (Scaptochirus moschata) are unique Chinese mammal that live in burrows for life. They have complex ecological adaptation mechanisms to adapt to perennial underground life. Intestinal microbes play an important role in the ecological adaptation of wild animals. The gut microbiota diversity and its function in short-faced moles’ ecological adaptation is a scientific issue worth exploring. In this study, the Illumina HiSeq sequencing platform was used to sequence the V3-V4 hypervariable regions of the 16S rRNA genes of 22 short-faced moles’ intestinal samples to study the composition and functional structure of their intestinal microbiota. The results showed that in the short-faced moles’ intestine, there are four main phyla, Firmicutes, Proteobacteria, Actinobacteria and Bacteroidete. At the family level, Peptostreptococcaceae and Enterobacteriaceae have the highest abundance. At the genus level, Romboutsia is the genus with the highest microbial abundance. According to the KEGG database, the main functions of short-faced mole gut microbes are metabolism, genetic information processing, environmental information processing, and cellular processes. The function of short-faced mole intestinal microbiota is suitable for its long-term burrowing life. No gender difference is found in the composition and function of the short-faced mole intestinal microbiota. There are significant differences in the composition and functional structure of the short-faced mole gut microbiota between samples collected from different habitats. We conferred that this is related to the different environment factors in which they live, especially to the edaphic factors.


2021 ◽  
Author(s):  
Jialiang Li ◽  
Xueyan Li ◽  
Sina Zhang ◽  
Chen Jin ◽  
Zixia Lin ◽  
...  

Abstract BACKGROUNDThe liver-microbiome axis is implicated in the pathogenesis of hepatobiliary cancer, and the role of the gut microbiota in cholangiocarcinoma (CCA) remains unclear.METHODWe conducted a case-control study on the intestinal flora of 33 CCA patients and 47 cholelithiasis individuals. We performed 16S rRNA gene sequencing to identify disease-related gut microbiota and assess the potential of the intestinal microbiome as a non-invasive biomarker for CCA.RESULTWe found that gut microbiome of CCA patients had a significantly higher alpha diversity (Shannon and Observed species indices, p = 0.006 and p = 0.02, respectively) and an overall different microbial community composition (p = 0.032). The genus Muribaculaceae_unclassified was most strongly associated with CCA (p < 0.001). We put forward a disease predictive model including twelve intestinal microbiome genera distinguished CCA patients from CF patients with an area under curve (AUC) of approximately 0.93 (95%CI, 0.85–0.987). The forecasting performance of this model was better than CA19-9. Moreover, genera Ezakiella and Garciella were only observed among intrahepatic cholangiocarcinoma patients. Further, we assessed predicted functional modules alternations CCA patients and uncovered a microbiota pattern specific to CCA.CONCLUSIONOur findings provide evidence of the intestinal microbiome as a non-invasive biomarker for CCA.


2021 ◽  
Author(s):  
Lei Chen ◽  
Di Xu ◽  
Jing Zhu ◽  
Shen Wang ◽  
Mi Liu ◽  
...  

Abstract The short-faced moles (Scaptochirus moschata) are unique Chinese mammal that live in burrows for life. They have complex ecological adaptation mechanisms to adapt to perennial underground life. Intestinal microbes play an important role in the ecological adaptation of wild animals. The gut microbiota diversity and its function in short-faced moles’ ecological adaptation is a scientific issue worth exploring. In this study, the Illumina HiSeq sequencing platform was used to sequence the V3-V4 hypervariable regions of the 16S rRNA genes of 22 short-faced moles’ intestinal samples to study the composition and functional structure of their intestinal microbiota. The results showed that in the short-faced moles’ intestine, there are four main phyla, Firmicutes, Proteobacteria, Actinobacteria and Bacteroidete. At the family level, Peptostreptococcaceae and Enterobacteriaceae have the highest abundance. At the genus level, Romboutsia is the genus with the highest microbial abundance. According to the KEGG database, the main functions of short-faced mole gut microbes are metabolism, genetic information processing, environmental information processing, and cellular processes. The function of short-faced mole intestinal microbiota is suitable for its long-term burrowing life. No gender difference is found in the composition and function of the short-faced mole intestinal microbiota. There are significant differences in the composition and functional structure of the short-faced mole gut microbiota between samples collected from different habitats. We conferred that this is related to the different environment factors in which they live, especially to the edaphic factors.


2019 ◽  
Author(s):  
Erica Grant ◽  
Randall C. Kyes ◽  
Pensri Kyes ◽  
Pauline Trinh ◽  
Vickie Ramirez ◽  
...  

AbstractTraditional zoonotic disease research focuses on detection of recognized pathogens and may miss opportunities to understand broader microbial transmission dynamics between humans, animals, and the environment. We studied human-macaque microbiome overlap in Kosum Phisai District, Maha Sarakham Province, Thailand, where a growing population of long-tailed macaques (Macaca fascicularis) in Kosumpee Forest Park interact with humans from an adjacent village. We surveyed workers in or near the park with elevated exposure to macaques to characterize tasks resulting in exposure to macaque feces in addition to dietary and lifestyle factors that influence gut microbiome composition. Fecal samples were collected from 12 exposed workers and 6 controls without macaque exposure, as well as 8 macaques from Kosumpee Forest Park and 4 from an isolated forest patch with minimal human contact. The V4 region of the 16S rRNA gene from fecal sample extracted DNA was amplified and sequenced using Illumina HiSeq to characterize the microbial community. A permuted betadisper test on the weighted UniFrac distances revealed significant differences in the dispersion patterns of gut microbiota from exposed and control macaques (p=0.03). The high variance in gut microbiota composition of macaques in contact with humans has potential implications for gut microbiome stability and susceptibility to disease, described by the Anna Karenina principle (AKP). Human samples had homogenous variance in beta diversity but different spatial medians between groups (p=0.02), indicating a shift in microbial composition that may be explained by fundamental lifestyle differences between the groups unrelated to exposure status. SourceTracker was used to estimate the percent of gut taxa in exposed humans that was contributed by macaques. While one worker showed evidence of elevated contribution, the overall trend was not significant. Task observations among workers revealed opportunities to employ protective measures or training to reduce exposure to occupational hazards. These results suggest the potential for hygiene measures to mitigate negative aspects of contact between humans and macaques in order to optimize the health of both populations.


2021 ◽  
Author(s):  
Lu Ling ◽  
Jun Zhou ◽  
Qianlong Meng ◽  
Ziran Zhang ◽  
Wenkun Li ◽  
...  

Gut microbiota dysbiosis is associated with a variety of diseases, such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), metabolic diseases, allergic diseases, neurodevelopmental disorders and cancer. The human gut microbiota can be influenced by a variety of factors, including geography, dietary habits, living environment, age and altered lifestyle etc. This study was conducted to explore the gut microbiota compositions in officials who are in a stable working environment and train drivers who are in a dynamic working environment. Microbiota communities in the feces of 80 officials and 88 train drivers were analyzed using Illumina MiSeq sequencing targeting the V3-V4 region of 16S ribosomal RNA (rRNA) gene and ITS1 region of fungi. There were significant differences between the two groups in diversity and richness of gut microbiota, while the microbial community compositions of the two groups were similar. The relationship between gut microbiota and clinical characteristics was investigated. We found that more bacteria and fungi were positively correlated with clinical characteristics. Functional prediction analysis of the gut microbiota between the two groups by PICRUSt2 revealed significant differences between the official group and the train driver group. Elucidating these differences of the microbiome between the two groups will provide a foundation understanding of the impact of a dynamic environment on gut microbiota.


2022 ◽  
Author(s):  
Na Luo ◽  
Wenjun Zhu ◽  
Xiaoyu Li ◽  
Min Fu ◽  
Xiaohong Peng ◽  
...  

Radiation-induced brain injury is a common complication of brain irradiation that eventually leads to irreversible cognitive impairment. Evidence has shown that the gut microbiome may play an important role in radiation-induced cognitive function. However, the effects of gut microbiota on radiation-induced brain injury (RIBI) remain poorly understood. Here we studied the link between intestinal microbes and radiation-induced brain injury to further investigate the effects of intestinal bacteria on neuroinflammation and cognitive function. We first verified the differences in gut microbes between male and female mice and administered antibiotics to C57BL/6 male mice to deplete the gut flora and then expose mice to radiation. We found that depletion of intestinal flora after irradiation may act as a protective modulator against radiation-induced brain injury. Moreover, we found that pretreatment with depleted gut microbes in RIBI mice suppressed brain pro-inflammatory factor production, and high-throughput sequencing analysis of mouse feces at 1-month postirradiation revealed microbial differences. Interestingly, a proportion of Verrucomicrobia Akkermansia showed partial recovery. Additionally, short-chain fatty acid treatments increased neuroinflammation in the radiation-induced brain injury model. Although a further increase in cognitive function was not observed, brain injury was aggravated in whole-brain irradiated mice to some extent. The protective effects of depleted intestinal flora and the utilization of the brain-gut axis open new avenues for development of innovative therapeutic strategies for radiation-induced brain injury.


2020 ◽  
Vol 287 (1922) ◽  
pp. 20192995 ◽  
Author(s):  
Seth D. Newsome ◽  
Kelli L. Feeser ◽  
Christina J. Bradley ◽  
Caitlin Wolf ◽  
Cristina Takacs-Vesbach ◽  
...  

Intestinal microbiota perform many functions for their host, but among the most important is their role in metabolism, especially the conversion of recalcitrant biomass that the host is unable to digest into bioavailable compounds. Most studies have focused on the assistance gut microbiota provide in the metabolism of carbohydrates, however, their role in host amino acid metabolism is poorly understood. We conducted an experiment on Mus musculus using 16S rRNA gene sequencing and carbon isotope analysis of essential amino acids (AA ESS ) to quantify the community composition of gut microbiota and the contribution of carbohydrate carbon used by the gut microbiome to synthesize AA ESS that are assimilated by mice to build skeletal muscle tissue. The relative abundances of Firmicutes and Bacteroidetes inversely varied as a function of dietary macromolecular content, with Firmicutes dominating when mice were fed low-protein diets that contained the highest proportions of simple carbohydrates (sucrose). Mixing models estimated that the microbial contribution of AA ESS to mouse muscle varied from less than 5% (threonine, lysine, and phenylalanine) to approximately 60% (valine) across diet treatments, with the Firmicute-dominated microbiome associated with the greatest contribution. Our results show that intestinal microbes can provide a significant source of the AA ESS their host uses to synthesize structural tissues. The role that gut microbiota play in the amino acid metabolism of animals that consume protein-deficient diets is likely a significant but under-recognized aspect of foraging ecology and physiology.


2021 ◽  
Vol 8 ◽  
Author(s):  
Li Gao ◽  
Li Liu ◽  
Chao Du ◽  
Qiangchuan Hou

The gut microbiota contributes to host health by maintaining homeostasis and improving digestive efficiency. Therefore, identifying gut microbes will shed light on the annual life cycle of animals and in particular those that are threatened or endangered. Nonetheless, the gut microbial composition of the majority of bird species is still unknown. Here, for the first time, 16S rRNA gene sequencing was used to characterize and compare the community composition and diversity of gut microbiotas from six species of birds raised at the Wildlife Conservation Center in Baotou, China: relict gull (Larus relictus; n = 3), muscovy duck (Cairina moschata; n = 3), ruddy shelduck (Tadorna ferruginea; n = 3), demoiselle crane (Anthropoides virgo; n = 4), whooper swan (Cygnus cygnus; n = 3), and black swan (Cygnus atratus; n = 5). A total of 26,616 operational taxonomic units from 21 samples were classified into 32 phyla and 507 genera. Chao1, Shannon diversity, observed species, and Simpson index analysis revealed differences in the community richness and diversity between the different species. Proteobacteria was the dominant bacterial phylum in whooper swan and relict gull, whereas Firmicutes was the dominant bacterial phylum in the other species. At the genus level, 11 dominant genera were detected (Lactobacillus, Psychrobacter, Enterococcus, Carnobacterium, Weissella, Burkholderia, Escherichia/Shigella, Leuconostoc, Buttiauxella, Desemzia, and Staphylococcus). Principal component and cluster analyses revealed that, while the microbial community composition of different individuals of the same species clustered together, the gut microbial composition varied between the bird species. Furthermore, the most abundant bacterial species differed between bird species. Because many avian gut microbes are derived from the diet, the eating habits and natural living environment of birds may be important contributing factors to the observed differences. Short-term changes to the diet and living environment have little effect on the composition of the avian gut microbiota. This study provides a theoretical basis for bird protection, including disease prevention and control.


Sign in / Sign up

Export Citation Format

Share Document