Practical implementations for improving the throughput in a manual crystallization setup

2005 ◽  
Vol 38 (3) ◽  
pp. 568-570 ◽  
Author(s):  
Christian Biertümpfel ◽  
Jérôme Basquin ◽  
Dietrich Suck

For the past few years, the number of structural genomics projects has been growing enormously worldwide. All these projects are supported by substantial financial resources and therefore are able to employ robotics for setting up high-throughput platforms. This paper addresses a simple question: how can basic research laboratories draw profit from the efforts and innovations that have been made to establish high-throughput facilities? To answer this question, the implementations that have been made in the authors' laboratory to improve manual crystallization setup with very limited financial investments are presented. In combination with 96-well microplates, an advanced protocol has been introduced and several simple devices have been designed to speed up different aspects of the manual crystallization setup, from storage of solutions to the setting of drops. These implementations lead to the reduction of costs in terms of time and money without any loss of quality. In addition, the crystallization throughput in the manual setup has been significantly increased.

2019 ◽  
Vol 98 (11) ◽  
pp. 1173-1182 ◽  
Author(s):  
P.C. Yelick ◽  
P.T. Sharpe

Over the past 100 y, tremendous progress has been made in the fields of dental tissue engineering and regenerative dental medicine, collectively known as translational dentistry. Translational dentistry has benefited from the more mature field of tissue engineering and regenerative medicine (TERM), established on the belief that biocompatible scaffolds, cells, and growth factors could be used to create functional, living replacement tissues and organs. TERM, created and pioneered by an interdisciplinary group of clinicians, biomedical engineers, and basic research scientists, works to create bioengineered replacement tissues that provide at least enough function for patients to survive until donor organs are available and, at best, fully functional replacement organs. Ultimately, the goal of both TERM and regenerative dentistry is to bring new and more effective therapies to the clinic to treat those in need. Very recently, the National Institutes of Health/National Institute of Dental and Craniofacial Research invested $24 million over a 3-y period to create dental oral and craniofacial translational resource centers to facilitate the development of more effective therapies to treat edentulism and other dental-related diseases over the next decade. This exciting era in regenerative dentistry, particularly for whole-tooth tissue engineering, builds on many key successes over the past 100 y that have contributed toward our current knowledge and understanding of signaling pathways directing natural tooth and dental tissue development—the foundation for current strategies to engineer functional, living replacement dental tissues and whole teeth. Here we use a historical perspective to present key findings and pivotal advances made in the field of translational dentistry over the past 100 y. We will first describe how this process has evolved over the past 100 y and then hypothesize on what to expect over the next century.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mónica Domínguez ◽  
Mireia Farrús ◽  
Leo Wanner

AbstractThe correspondence between the communicative intention of a speaker in terms of Information Structure and the way this speaker reflects communicative aspects by means of prosody have been a fruitful field of study in Linguistics. However, text-to-speech applications still lack the variability and richness found in human speech in terms of how humans display their communication skills. Some attempts were made in the past to model one aspect of Information Structure, namelythematicityfor its application to intonation generation in text-to-speech technologies. Yet, these applications suffer from two limitations: (i) they draw upon a small number of made-up simple question-answer pairs rather than on real (spoken or written) corpus material; and (ii) they do not explore whether any other interpretation would better suit a wider range of textual genres beyond dialogs. In this paper, two different interpretations of thematicity in the field of speech technologies are examined: the state-of-art binary (and flat) theme-rheme, and the hierarchical thematicity defined by Igor Mel’čuk within the Meaning-Text Theory. The outcome of the experiments on a corpus of native speakers of US English suggests that the latter interpretation of thematicity has a versatile implementation potential for text-to-speech applications of theInformation Structure–prosodyinterface.


Reproduction ◽  
2010 ◽  
Vol 140 (4) ◽  
pp. 505-519 ◽  
Author(s):  
Katie L Meehan ◽  
Adam Rainczuk ◽  
Lois A Salamonsen ◽  
Andrew N Stephens

Over the past decade, high-throughput proteomics technologies have evolved considerably and have become increasingly more commonly applied to the investigation of female reproductive diseases. Proteomic approaches facilitate the identification of new disease biomarkers by comparing the abundance of hundreds of proteins simultaneously to find those specific to a particular clinical condition. Some of the best studied areas of female reproductive biology applying proteomics include gynaecological cancers, endometriosis and endometrial infertility. This review will discuss the progress that has been made in these areas and will highlight some of the emerging technologies that promise to contribute to better understanding of the female reproductive disease.


2020 ◽  
Author(s):  
Kalle Hauss

Abstract Academic conferences are global phenomena. As the coronavirus pandemic continues, many conferences now are being postponed or canceled. Usually, they bring together a complex network of academic and nonacademic professionals to discuss and disseminate new knowledge. The practice of ‘conferencing’ also includes activities that go far beyond the exchange of information. Conferences constitute social spaces where researchers encounter other researchers, establish new contacts, maintain old contacts, hold exploratory talks, and initiate collaborations. Academic conferences therefore can yield a plenitude of scientific and societal impacts. In the past, much progress has been made in measuring the impact of financial investments in science. There is, however, no shared understanding of how to measure the impact of academic conferences. Against the background of the time and money that is spent on both visiting and organizing conferences, it is important to understand the ways in which conferences generate impact. The coronavirus pandemic also shows that it is important to implement digital technologies like tools for virtual conferencing. This article uses qualitative and quantitative data to examine the conference activities of young scholars from German universities and to study how they profit from attending conferences. It is shown that conferences play a significant role in the qualification process. However, in terms of information and networking benefits, postdocs compared with doctoral students seem to profit more.


2017 ◽  
Vol 24 (9) ◽  
pp. T65-T82 ◽  
Author(s):  
Shivangi Agarwal ◽  
Dileep Varma

A colossal amount of basic research over the past few decades has provided unprecedented insights into the highly complex process of cell division. There is an ever-expanding catalog of proteins that orchestrate, participate and coordinate in the exquisite processes of spindle formation, chromosome dynamics and the formation and regulation of kinetochore microtubule attachments. Use of classical microtubule poisons has still been widely and often successfully used to combat a variety of cancers, but their non-selective interference in other crucial physiologic processes necessitate the identification of novel druggable components specific to the cell cycle/division pathway. Considering cell cycle deregulation, unscheduled proliferation, genomic instability and chromosomal instability as a hallmark of tumor cells, there lies an enormous untapped terrain that needs to be unearthed before a drug can pave its way from bench to bedside. This review attempts to systematically summarize the advances made in this context so far with an emphasis on endocrine-related cancers and the avenues for future progress to target mitotic mechanisms in an effort to combat these dreadful cancers.


2018 ◽  
pp. 80-89
Author(s):  
Willi H. Hager

The Hydraulic Laboratory of Liège University, Belgium, is historically considered from its foundation in 1937 to the mid-1960s. The technical facilities of the various Buildings are highlighted, along with canals and instrumentation available. It is noted that in its initial era, comparatively few basic research has been conducted, mainly due to the professional background of the professors leading the establishment. This state was improved in the past 50 years, however, particularly since the Laboratory was dislocated to its current position in the novel University Campus. Biographies of the leading persons associated with the Liège Hydraulic Laboratory are also presented, so that a comprehensive picture is given of one of the currently leading hydraulic Laboratories of Europe.


1973 ◽  
Vol 12 (2) ◽  
pp. 181-188
Author(s):  
Rafiq Ahmad

Like nations and civilizations, sciences also pass through period of crises when established theories are overthrown by the unpredictable behaviour of events. Economics is passing through such a crisis. The challenge thrown by the Great Depression of early 1930s took a decade before Keynes re-established the supremacy of economics. But this supremacy has again been upset by the crisis of poverty in the vast under-developed world which attained political independence after the Second World War. Poverty had always existed but never before had it been of such concern to economists as during the past twenty five years or so. Economic literature dealing with this problem has piled up but so have the agonies of poverty. No plausible and well-integrated theory of economic development or under-development has emerged so far, though brilliant advances have been made in isolated directions.


2019 ◽  
Vol 26 (13) ◽  
pp. 2330-2355 ◽  
Author(s):  
Anutthaman Parthasarathy ◽  
Sasikala K. Anandamma ◽  
Karunakaran A. Kalesh

Peptide therapeutics has made tremendous progress in the past decade. Many of the inherent weaknesses of peptides which hampered their development as therapeutics are now more or less effectively tackled with recent scientific and technological advancements in integrated drug discovery settings. These include recent developments in synthetic organic chemistry, high-throughput recombinant production strategies, highresolution analytical methods, high-throughput screening options, ingenious drug delivery strategies and novel formulation preparations. Here, we will briefly describe the key methodologies and strategies used in the therapeutic peptide development processes with selected examples of the most recent developments in the field. The aim of this review is to highlight the viable options a medicinal chemist may consider in order to improve a specific pharmacological property of interest in a peptide lead entity and thereby rationally assess the therapeutic potential this class of molecules possesses while they are traditionally (and incorrectly) considered ‘undruggable’.


Author(s):  
Rocco J. Rotello ◽  
Timothy D. Veenstra

: In the current omics-age of research, major developments have been made in technologies that attempt to survey the entire repertoire of genes, transcripts, proteins, and metabolites present within a cell. While genomics has led to a dramatic increase in our understanding of such things as disease morphology and how organisms respond to medications, it is critical to obtain information at the proteome level since proteins carry out most of the functions within the cell. The primary tool for obtaining proteome-wide information on proteins within the cell is mass spectrometry (MS). While it has historically been associated with the protein identification, developments over the past couple of decades have made MS a robust technology for protein quantitation as well. Identifying quantitative changes in proteomes is complicated by its dynamic nature and the inability of any technique to guarantee complete coverage of every protein within a proteome sample. Fortunately, the combined development of sample preparation and MS methods have made it capable to quantitatively compare many thousands of proteins obtained from cells and organisms.


Author(s):  
John Hunsley ◽  
Eric J. Mash

Evidence-based assessment relies on research and theory to inform the selection of constructs to be assessed for a specific assessment purpose, the methods and measures to be used in the assessment, and the manner in which the assessment process unfolds. An evidence-based approach to clinical assessment necessitates the recognition that, even when evidence-based instruments are used, the assessment process is a decision-making task in which hypotheses must be iteratively formulated and tested. In this chapter, we review (a) the progress that has been made in developing an evidence-based approach to clinical assessment in the past decade and (b) the many challenges that lie ahead if clinical assessment is to be truly evidence-based.


Sign in / Sign up

Export Citation Format

Share Document