Development of a high-precision XYZ translator and estimation of beam profile of the vacuum ultraviolet and soft X-ray undulator beamline BL-13B at the Photon Factory

2020 ◽  
Vol 27 (4) ◽  
pp. 923-933
Author(s):  
Yoshihiro Aiura ◽  
Kenichi Ozawa ◽  
Kazuhiko Mase ◽  
Makoto Minohara ◽  
Satoshi Suzuki

A high-precision XYZ translator was developed for the microanalysis of electronic structures and chemical compositions on material surfaces by electron spectroscopy techniques, such as photoelectron spectroscopy and absorption spectroscopy, utilizing the vacuum ultraviolet and soft X-ray synchrotron radiation at an undulator beamline BL-13B at the Photon Factory. Using the high-precision translator, the profile and size of the undulator beam were estimated. They were found to strongly depend on the photon energy but were less affected by the polarization direction. To demonstrate the microscopic measurement capability of an experimental apparatus incorporating a high-precision XYZ translator, the homogeneities of an SnO film and a naturally grown anatase TiO2 single crystal were investigated using X-ray absorption and photoemission spectroscopies. The upgraded system can be used for elemental analyses and electronic structure studies at a spatial resolution in the order of the beam size.

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 787
Author(s):  
Weiqi Wang ◽  
Xiaoming Ling ◽  
Rui Wang ◽  
Wenhao Nie ◽  
Li Ji ◽  
...  

The spontaneously self-organizing multilayered graphite-like carbon (denoted as GLC) /TiC films with various bilayer periods in the range of 13.3–17.5 nm were deposited on silicon and 1Cr18Mn8Ni5N stainless steel substrates using closed field magnetron sputtering deposition facility. The microstructures and chemical compositions of the prepared multilayered films were characterized by scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy respectively. The self-organizing multilayered structures in all of the films consisted of titanium carbide layers and sp2-rich carbon layers periodically alternate arrangement. The TiC contents and bilayer periods of the multilayered films can be controlled by means of adjusting of sputtering current of graphite target. Furthermore, the mechanical and tribological performances of the prepared films were appraised by nano-indentor, scratch measures, and ball-on-plate tribometer respectively. The results indicated that multilayer structure endowed the as-deposited TiC/GLC films outstanding mechanical and tribological properties, especially the multilayer film with 15.9 nm bilayer period deposited at 10 A sputtering current showed the excellent adhesion strength and hardness; Simultaneously it also exhibited the lowest average friction coefficient in the humid environment owing to its high content of sp2 hybrid carbon.


2011 ◽  
Vol 287-290 ◽  
pp. 539-543 ◽  
Author(s):  
Wen Shi Ma ◽  
Jun Wen Zhou ◽  
Xiao Dan Lin

Graphene oxide was prepared through Hummers' method,then different reduced graphenes were prepared via reduction of graphene oxide with hydrazine hydrate for 1h、12h and 24h. X-ray photoelectron spectroscopy (XPS) was used for the characterization of graphene oxide and the reduced graphenes. The variation of the contents of carbon in carbon and oxygen functional groups and chemical compositions of graphene oxides were investigated through analysis the content of different carbon atoms in different reduced graphenes. The results showed that the reduction reaction was very fast in the first 1 h, the content of total oxygen bonded carbon atoms decreased from 83.6% to 22.1%, and then after the reduction rate became very slow. After 12h, the content of total oxygen bonded carbon atom is 19.56%, only 2.54% lower than that of 1h’s. At the same time, C-N was introduced in the graphene oxides; this increased the stereo-hindrance for hydrazine hydrate attacking the C-Oxygen groups, thus reduced the reduction rate. After reduction for 24h, there still exists 16.4% oxygen bonded carbon atoms and the total conversion ratio of graphene approaches 70%.


2011 ◽  
Vol 236-238 ◽  
pp. 1467-1471 ◽  
Author(s):  
Ya Lan Liu ◽  
Shi Jie Shen ◽  
Li Zhang ◽  
Ling Min Shao

In this paper, two types of fiber surface treatment methods, namely heat treatment and chemical coupling, were used to improve the basalt fiber surface properties. The basalt fiber surface was heated under 250Celsius degree for 30minites, and then was treated by silane coupling agent ethanol solution with different concentrations. X-ray photoelectron spectroscopy (XPS) was utilized to study the surface chemical compositions of basalt fiber after treatments. The XPS analysis indicated that chemical bonds between basalt fiber and KH-550 have occurred, and silanols were adsorbed to the surface of basalt fibers by an ether linkage between the silanols and the hydroxyl groups of the fibers. When the concentration of KH-550 is 0.8wt%, the optimal bonding condition is formed between basalt fiber and silane coupling agent.


2014 ◽  
Vol 971-973 ◽  
pp. 135-138
Author(s):  
Zhen Dong Sun ◽  
Yan Ning Yang ◽  
Qing Peng Li ◽  
Jian Guo Liu ◽  
Chuan Wei Yan

The mixed silane films were obtained on the surface of the Q235 steel sheets by directly immersing in a mixed silane solution containing γ-Glycidoxypropyltriethoxysilane (γ-GPS) and 1, 2-bis (triethoxysilyl) ethane (BTSE), The chemical compositions and microstructures of the films were examined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier Transform infrared spectroscopy (FTIR).The corrosion resistances were investigated by electrochemical measurements and neutral salt spray (NSS) test. The effects of silane films to the epoxy coating were investigated through the adhesive property test. The results showed that the γ-GPS/BTSE mixed silane film could remarkably improve the corrosion resistance of epoxy coating and prolong its service life.


2016 ◽  
Vol 863 ◽  
pp. 102-107
Author(s):  
Jing Chie Lin ◽  
Amrita Choudhury ◽  
Yao Tien Tsneg ◽  
Kun Cheng Peng

Electrochemical deposition of Al-doped ZnO (AZO) on the ITO glass was investigated in baths containing various concentrations of aluminum nitrate. The electrochemical and chemical reactions can be deduced by means of investigating cathodic polarization curves and time/electroplating-current curves for further characterizing structures of ZnO and AZO, and establishing growth mechanism. High-quality AZO nanorods, depositing on ITO substrate that coated with ZnO seed-layer, were utilized the electrochemical method at-1.0 V (against a reference electrode of Ag/AgCl in 3.0M KCl) in the bath of 90 °C. After annealing at 350 °C, ZnO and AZO nanorods were analyzed by field-emission scanning electron microscope (FESEM) to explore the morphology of nanostructure. The SEM image displayed that the lower Al3+ concentrations (20 ~ 60 μM) in the bath, the average diameter of nanorods decreased; while the Al3+ concentrations excessed over 60 μM, the morphology of the AZO nanorods turned into partial-area nanosheets instead of the nanorods spread. The crystal structure of the AZO nanorods were identified by using grazing-incident X-ray diffraction (GIXRD). The patterns of the Al3+ ions in the range of 20 ~ 60 μM in the bath showed that the preferred orientations were along with the [002] direction which confirmed the result of AZO nanorods well aligned in c-axis orientation, and the characterized peak (002) slightly shifted to the right suggested that Al atoms had doped into the ZnO lattice. We also adopted the X-ray photoelectron spectroscopy to characterize the elemental and chemical compositions of the AZO nanorods. XPS spectrums confirmed that the Al atoms successfully doped. Finally, for identifying the optimal boundary condition of Al content in ZnO, the nanorods with various Al concentrations were utilized via dye-sensitized solar cells (DSSC) experiment with the standard solar Simulators (AM1.5G) and J-V Measurement. We found that the AZO nanorods as the photoanode contained 2.84 at.% Al (60 μM aluminum nitrate in the bath) which performed the highest fill-factor (0.53) and the maximum efficiency (0.41%).


2001 ◽  
Vol 08 (01n02) ◽  
pp. 43-50 ◽  
Author(s):  
M. KONO ◽  
X. SUN ◽  
R. LI ◽  
K. C. WONG ◽  
K. A. R. MITCHELL ◽  
...  

X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) have been used to characterize surfaces of aluminum which have been pretreated by mechanical polishing, acid etching and alkaline etching, as well as given subsequent exposures to air and water. These surfaces can differ markedly with regard to their chemical compositions and topographical structures. Characterizations of these surfaces after exposures to three organosilanes, γ-GPS, BTSE and γ-APS, indicate that the amount of silane adsorbed in each case shows a tendency to increase both with the number of OH groups detected at the oxidized aluminum and with the surface roughness. The XPS data are consistent with the adhesion of γ-APS occurring through H bonding, especially via NH3+ groups.


2015 ◽  
Vol 22 (6) ◽  
pp. 1359-1363 ◽  
Author(s):  
Akio Toyoshima ◽  
Takashi Kikuchi ◽  
Hirokazu Tanaka ◽  
Kazuhiko Mase ◽  
Kenta Amemiya

Carbon-free chromium-coated optics are ideal in the carbonK-edge region (280–330 eV) because the reflectivity of first-order light is larger than that of gold-coated optics while the second-order harmonics (560–660 eV) are significantly suppressed by chromiumL-edge and oxygenK-edge absorption. Here, chromium-, gold- and nickel-coated mirrors have been adopted in the vacuum ultraviolet and soft X-ray branch beamline BL-13B at the Photon Factory in Tsukuba, Japan. Carbon contamination on the chromium-coated mirror was almost completely removed by exposure to oxygen at a pressure of 8 × 10−2 Pa for 1 h under irradiation of non-monochromated synchrotron radiation. The pressure in the chamber recovered to the order of 10−7 Pa within a few hours. The reflectivity of the chromium-coated mirror of the second-order harmonics in the carbonK-edge region (560–660 eV) was found to be a factor of 0.1–0.48 smaller than that of the gold-coated mirror.


Author(s):  
K. Ganesh Kumar ◽  
P. Balaji Bhargav ◽  
C. Balaji ◽  
Ahmed Nafis ◽  
K. Aravinth ◽  
...  

Abstract Owing to high lithium ion conductivity and good stability with lithium metal, Li7La3Zr2O12 (LLZO—a solid electrolyte) has emerged as a viable candidate for solid-state battery applications. In the current study, Al-substituted LLZO (Al-LLZO) powder is synthesized using a typical solid-state reaction. The pellets are made with the synthesized powder and are subjected to annealing for different durations and its effect on the structural properties of the Al-LLZO is investigated in detail. Reitveld refinement of the powder X-ray diffraction pattern reveals that the sintered Al-LLZO belong to the cubic system with the Ia-3d space group at room temperature. Morphology and microstructural properties of sintered powder are analyzed using field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM)/selected area electron diffraction (SAED), respectively. The FESEM image of LLZO pellets shows well-structured cubic grains spread evenly over on the surface after sintering. The chemical compositions of the sample are identified using energy dispersive X-ray analysis (EDAX). The surface chemistry of the prepared samples is examined by X-ray photoelectron spectroscopy (XPS), which states that the observed photoelectron signals from O 1s at about 531 eV and Li1s at 54.52 eV correspond to the Li-O bond in Al-LLZO. Raman spectra have been analyzed and the observed Raman peaks appearing at 299 cm−1, 393 cm−1, 492 cm−1, and 514 cm−1 were assigned to Eg, F2g, A1g, and F2g, respectively. Phase transformation from C-LLZO to the pyrochore LZO phase is noticed when the sample is sintered for 12 h at 1100 °C. The impedance analysis is carried out to measure the conductivity of the Al-LLZO pellet and is found to be 0.3 × 10−5 S cm−1, which is suitable for solid electrolyte applications in lithium ion batteries.


2021 ◽  
pp. 1-13
Author(s):  
Jian Liu ◽  
Xudong Sui ◽  
Zhen Yan ◽  
Guosheng Huang ◽  
Junying Hao

Abstract Cr doped MoS2 films were deposited by magnetron sputtering. The tribological properties of Cr doped MoS2 films under vacuum (VC) and air (AR) environments were investigated. The results show that Cr doped MoS2 film with Cr target power of 0.2 A (0.2 A Cr:MoS2 film) exhibits low friction coefficient and long wear life under both VC and AR environments. The chemical compositions of the films were analyzed by energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). With the increases of Cr target power, the content of Cr increases. The cross-sectional FESEM morphologies show that the structure of the films changed from granular particles to column when the Cr target power increases from 0.2A to 0.4A. The wear mechanism has also been discussed based on the characteristics of worn surface. The 0.4 A Cr:MoS2 film has the lowest wear volume among these films, which can be attributed to the compact microstructure. The bandgap of Cr doped MoS2 films were measured by XPS and the tribological performance of the film is found to be best when there is a modest bandgap. It can be speculated that the tribological performance of Cr doped MoS2 films are closely related to the width of bandgap.


Sign in / Sign up

Export Citation Format

Share Document