scholarly journals Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy

IUCrJ ◽  
2016 ◽  
Vol 3 (1) ◽  
pp. 32-42 ◽  
Author(s):  
Loïc Renversade ◽  
Romain Quey ◽  
Wolfgang Ludwig ◽  
David Menasche ◽  
Siddharth Maddali ◽  
...  

The grain structure of an Al–0.3 wt%Mn alloy deformed to 1% strain was reconstructed using diffraction contrast tomography (DCT) and high-energy diffraction microscopy (HEDM). 14 equally spaced HEDM layers were acquired and their exact location within the DCT volume was determined using a generic algorithm minimizing a function of the local disorientations between the two data sets. The microstructures were then compared in terms of the mean crystal orientations and shapes of the grains. The comparison shows that DCT can detect subgrain boundaries with disorientations as low as 1° and that HEDM and DCT grain boundaries are on average 4 µm apart from each other. The results are important for studies targeting the determination of grain volume. For the case of a polycrystal with an average grain size of about 100 µm, a relative deviation of about ≤10% was found between the two techniques.

2017 ◽  
Vol 266 ◽  
pp. 257-263
Author(s):  
Wassana Wichai ◽  
Rutchadakorn Isarapatanapong ◽  
Niwat Anuwongnukroh ◽  
Surachai Dechkunakorn

This study investigated four commercially available NiTi orthodontic archwires from different manufactures for their grain structure and surface roughness.Four commercially available pre-formed NiTi orthodontic archwire (Ormco, Sentalloy, Highland and NIC) with diameter 0.016 x 0.022 inch2 were tested. The wire samples were polished and etched to evaluate the morphology and structure of wire surface. Each NiTi archwire was investigated under a reflected light microscope of an Optical Microscope to analyze its grain structure and size, in longitudinal surfaces. The surfaces of wire were qualitatively examined in the secondary electron mode at common magnification (500X). The surface roughness was also evaluated by a surface roughness tester. The descriptive statistic was evaluated the mean and standard deviation of surface roughness and Medcale T-Test was to test the mean difference of the surface roughness in each brands. This study showed an average grain size of 2-8 μm for each NiTi archwire. The wire surface of Ormco and Highland showed straiations along the longitudinal axes, however Sentalloy and NIC showed small pores on the wire surface. The surface roughness was 0.09 μm for Highland, 0.25 μm for Sentalloy, 0.28 μm for Ormco and 0.46 μm for NIC archwire. The Highland was smoothest and NIC was the roughest. There were in significant (p < 0.05) difference of surface roughness of each brands. The results showed that the four manufactures NiTi archwires were different in grain size, wire surface and surface roughness. During clinical application, these archwires may exhibit different mechanical properties, such as strength, hardness, ductity, and friction because of their microstructure.


Author(s):  
Z. Horita ◽  
D. J. Smith ◽  
M. Furukawa ◽  
M. Nemoto ◽  
R. Z. Valiev ◽  
...  

It is possible to produce metallic materials with submicrometer-grained (SMG) structures by imposing an intense plastic strain under quasi-hydrostatic pressure. Studies using conventional transmission electron microscopy (CTEM) showed that many grain boundaries in the SMG structures appeared diffuse in nature with poorly defined transition zones between individual grains. The implication of the CTEM observations is that the grain boundaries of the SMG structures are in a high energy state, having non-equilibrium character. It is anticipated that high-resolution electron microscopy (HREM) will serve to reveal a precise nature of the grain boundary structure in SMG materials. A recent study on nanocrystalline Ni and Ni3Al showed lattice distortion and dilatations in the vicinity of the grain boundaries. In this study, HREM observations are undertaken to examine the atomic structure of grain boundaries in an SMG Al-based Al-Mg alloy.An Al-3%Mg solid solution alloy was subjected to torsion straining to produce an equiaxed grain structure with an average grain size of ~0.09 μm.


2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


2007 ◽  
Vol 29-30 ◽  
pp. 143-146 ◽  
Author(s):  
Aamir Mukhtar ◽  
De Liang Zhang ◽  
C. Kong ◽  
P. R. Munroe

Cu-(2.5 or 5.0vol.%)Al2O3 nanocomposite balls and granules and Cu-(2.5vol.% or 5.0vol.%)Pb alloy powder were prepared by high energy mechanical milling (HEMM) of mixtures of Cu and either Al2O3 or Pb powders. It was observed that with the increase of the content of Al2O3 nanoparticles from 2.5vol.% to 5vol.% in the powder mixture, the product of HEMM changed from hollow balls into granules and the average grain size and microhardness changed from approximately 130nm and 185HV to 100nm and 224HV, respectively. On the other hand, HEMM of Cu–(2.5 or 5.0vol.%) Pb powder mixtures under the same milling conditions failed to consolidate the powder in-situ. Instead, it led to formation of nanostructured fine powders with an average grain size of less than 50nm. Energy dispersive X-ray mapping showed homogenous distribution of Pb in the powder particles in Cu–5vol.%Pb alloy powder produced after 12 hours of milling. With the increase of the Pb content from 2.5 to 5.0 vol.%, the average microhardness of the Cu-Pb alloy powder particles increases from 270 to 285 HV. The mechanisms of the effects are briefly discussed.


2018 ◽  
Vol 74 (5) ◽  
pp. 425-446 ◽  
Author(s):  
Ashley Nicole Bucsek ◽  
Darren Dale ◽  
Jun Young Peter Ko ◽  
Yuriy Chumlyakov ◽  
Aaron Paul Stebner

Modern X-ray diffraction techniques are now allowing researchers to collect long-desired experimental verification data sets that are in situ, three-dimensional, on the same length scales as critical microstructures, and using bulk samples. These techniques need to be adapted for advanced material systems that undergo combinations of phase transformation, twinning and plasticity. One particular challenge addressed in this article is direct analysis of martensite phases in far-field high-energy diffraction microscopy experiments. Specifically, an algorithmic forward model approach is presented to analyze phase transformation and twinning data sets of shape memory alloys. In the present implementation of the algorithm, the crystallographic theory of martensite (CTM) is used to predict possible martensite microstructures (i.e. martensite orientations, twin mode, habit plane, twin plane and twin phase fractions) that could form from the parent austenite structure. This approach is successfully demonstrated on three single- and near-single-crystal NiTi samples where the fundamental assumptions of the CTM are not upheld. That is, the samples have elastically strained lattices, inclusions, precipitates, subgrains, R-phase transformation and/or are not an infinite plate. The results indicate that the CTM still provides structural solutions that match the experiments. However, the widely accepted maximum work criterion for predicting which solution of the CTM should be preferred by the material does not work in these cases. Hence, a more accurate model that can simulate these additional structural complexities can be used within the algorithm in the future to improve its performance for non-ideal materials.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1383-1388 ◽  
Author(s):  
MASLEEYATI YUSOP ◽  
DELIANG ZHANG ◽  
MARCUS WILSON ◽  
NICK STRICKLAND

Al 2 O 3-20 vol % Fe 70 Co 30 composite powders have been prepared by high energy ball milling a mixture of Al 2 O 3 powder and Fe 70 Co 30 alloy powder. The Fe 70 Co 30 alloy powder was also prepared by mechanical alloying of Fe and Co powders using the same process. The effects of milling duration from 8 to 48 hours on microstructure and magnetic properties of the nanostructured composite powders have been studied by means of X-ray Diffractometry (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). It was found that the nanostructured composite powder particles with irregular shapes and Fe 70 Co 30 alloy particles being embedded in them formed after 8 hours of milling. The average grain size of the Al 2 O 3 matrix reduced drastically to less than 18nm after 16 hours of milling. On the other hand, the embedded alloy particles demonstrated almost unchanged average grain size in the range of 14-15nm. Magnetic properties of the powder compacts at room temperature were measured from hysteresis curves, and show strong dependence of the milling time, with the coercivity increasing from 67.1 up to 127.9kOe with increasing the milling time from 8 to 48 hours. The possible microstructural reasons for this dependence are discussed.


2021 ◽  
Vol 1016 ◽  
pp. 1503-1509
Author(s):  
Kosuke Ueki ◽  
Soh Yanagihara ◽  
Kyosuke Ueda ◽  
Masaaki Nakai ◽  
Takayoshi Nakano ◽  
...  

The Co-20Cr-15W-10Ni (CCWN, mass%) alloy has excellent corrosion resistance and strength-ductility balance and is applied in almost all balloon-expandable stent platforms. To further reduce the invasiveness of stent placement, it is necessary to reduce the diameter of the stent. That is, both high strength and high ductility should be achieved while maintaining a low yield stress. In our previous studies, it was discovered that low-temperature heat-treatment (LTHT) at 873 K improves the elongation of the CCWN alloy. In this study, we focused on the grain refinement by swaging and static recrystallization to improve the strength of the alloy. The as-swaged alloy was recrystallized at 1373–1473 K for 100–300 s, followed by LTHT. A fine grain structure with an average grain size of 3–17 μm was obtained by static recrystallization. The η-phase (M12X-M6X type precipitates, M: metallic elements, X: C and/or N) formed during the recrystallization at 1373–1448 K. The alloys recrystallized at 1448 and 1473 K had a homogeneous structure with a small variation in the grain size. On the other hand, the alloys recrystallized at 1373 and 1423 K had an inhomogeneous structure in which fine and coarse grains were mixed. Both the strength and ductility of the CCWN alloy were improved by combining high-temperature short-time recrystallization and LTHT.


2005 ◽  
Vol 486-487 ◽  
pp. 411-414 ◽  
Author(s):  
Won Yong Kim ◽  
Jae Sung Park ◽  
Mok Soon Kim

Mechanical properties of a nano-structured Al-8Fe-2Mo-2V-1Zr alloy produced by spray forming and subsequent hot-extrusion at 420°C were investigated in terms of tensile test as a function of temperature. Warm rolling was adapted as an additional process to expect further refinement in microstructure. Well-defined equiaxed grain structure and finely distributed dispersoids with nano-scale in particle size were observed in the spray formed and hot extruded sample (as-received sample). The average grain size and particle size were measured to 500 nm and 50 nm, respectively. While it was found that warm rolling gives rise to precipitate fine dispersoids less than 10 nm without influencing the grain size of matrix phase, in the temperature range of RT∼150°C, distinguishable changes in ultimate tensile strength were not found between the as-received and warm-rolled samples. At elevated temperatures ranging from 350 to 550°C, warm-rolled sample showed a higher value of elongation than as-received one although similar values of elongation were observed between two samples at temperatures lower than 350°C.


1992 ◽  
Vol 283 ◽  
Author(s):  
H. J. Kim ◽  
James S. Im ◽  
Michael O. Thompson

ABSTRACTUsing planar view transmission electron microscope (TEM) and transient reflectance (TR) analyses, we have investigated the excimer laser crystallization of amorphous silicon (a-Si) films on SiO2. Emphasis was placed on characterizing the microstructures of the single-shot irradiated materials, as a function of the energy density of the laser pulse and the temperature of the substrate. The dependence of the grain size and melt duration as a function of energy density revealed two major crystallization regimes. In the low energy density regime, the average grain size first increases gradually with increases in the laser energy density. In the high energy density regime, on the other hand, a very fine grained microstructure, which is relatively insensitive to variations in the laser energy density, is obtained. In addition, we have discovered that at the transition between these two regimes an extremely small experimental window exists, within which an exceedingly large grain-sized polycrystalline film is obtained. We suggest a liquid phase growth model for this phenomenon, which is based on the regrowth of crystals from the residual solid islands at the oxide interface.


Sign in / Sign up

Export Citation Format

Share Document