Frost resistance of roller compacted concrete in airport runway subjected to ethylene glycol solution

2019 ◽  
Vol 66 (1) ◽  
pp. 40-44 ◽  
Author(s):  
Wuman Zhang ◽  
Jingsong Zhang ◽  
Shuhang Chen

Purpose Ethylene glycol (EG) solution is a common deicing fluid of the aircrafts. Roller compacted concrete (RCC) used in the runway and the parking apron will be subjected to freeze-thaw cycles in EG solution. The purpose of this study is to find whether RCC can be damaged by the action of freeze-thaw cycles or long-term immersion in EG solution. Design/methodology/approach Freeze-thaw cycles test and immersion test in EG solution by weight were used to accelerate the degradation of RCC. A compression test and a three-point bending test were carried out in the laboratory to evaluate mechanical properties of RCC. The changes of microstructure were monitored by using scanning electron microscopy and energy-dispersive X-ray analysis. Findings The results show that RCC specimens have little weight change in both freeze-thaw cycles test and immersion test. The dynamic modulus of elasticity, the compressive strength and the flexural strength of RCC with 250 freeze-thaw cycles in EG solution are decreased by 4.2, 15 and 39 per cent, respectively. The compressive strength is decreased by 35 per cent after 12 months of immersion in EG solution. Micro-cracks occur and increase with the increase in freeze-thaw cycles and immersion test. Originality/value The mass ratio of the elements in the crystal is very close to the proportion of elements in CaC2O4 (C:O:Ca = 1:1.26:1.6). More attention should be paid to using EG in practical engineering because both the freeze-thaw cycles and the complete immersion in EG solution damage the mechanical properties of RCC.

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Wuman Zhang ◽  
Jingsong Zhang ◽  
Shuhang Chen ◽  
Sheng Gong

Two sets of roller-compacted concrete (RCC) samples cured for 28 days were subjected to freeze-thaw (F-T) cycles and immersion in laboratory conditions. F-T cycles in water and water-potassium acetate solution (50% by weight) were carried out and followed by the flexural impact test. The weight loss, the dynamic elastic modulus (Ed), the mechanical properties, and the residual strain of RCC were measured. The impact energy was calculated based on the final number of the impact test. The results show that the effect of F-T cycles in KAc solution on the weight loss and Ed of RCC is slight. Ed, the compressive strength, and the flexural strength of RCC with 250 F-T cycles in KAc solution decrease by 3.8%, 23%, and 36%, respectively. The content (by weight) of K+ at the same depth of RCC specimens increases with the increase of F-T cycles. The impact energy of RCC specimens subjected to 250 F-T cycles in KAc solution decreases by nearly 30%. Microcracks occur and increase with the increase of F-T cycles in KAc solution. The compressive strength of RCC immersed in KAc solution decreases by 18.8% and 32.8% after 6 and 12 months. More attention should be paid to using KAc in practical engineering because both the freeze-thaw cycles and the complete immersion in KAc solution damage the mechanical properties of RCC.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wasim Barham ◽  
Ammar AL-Maabreh ◽  
Omar Latayfeh

PurposeThe influence of using magnetic water instead of tap water in the mechanical properties of the concrete exposed to elevated temperatures was investigated. Two concrete mixes were used and cast with the same ingredients. Tap water was used in the first mix and magnetic water was used in the second mix. A total of 48 specimens were cast and divided as follows: 16 cylinders for the concrete compressive strength test (8 samples for each mix), 16 cylinders for the splitting tensile strength (8 specimens for each mix) and 16 beams to test the influences of magnetized water on the flexural strength of concrete (8 specimens for each mixture). Specimens were exposed to temperatures of (25 °C, 200 °C, 400 °C and 600 °C). The experimental results showed that magnetic water highly affected the mechanical properties of concrete. Specimens cast and curried out with magnetic water show higher compressive strength, splitting tensile strength and flexural strength compared to normal water specimens at all temperatures. The relative strength range between the two types of water used was 110–123% for compressive strength and 110–133% for splitting strength. For the center point loading test, the relative flexural strength range was 118–140%. The use of magnetic water in mixing concrete contribute to a more complete hydration process.Design/methodology/approachExperimental study was carried out on two concrete mixes to investigate the effect of magnetic water. Mix#1 used normal water as the mixing water, and Mix#2 used magnetic water instead of normal water. After 28 days, all the samples were taken out of the tank and left to dry for seven days, then they were divided into different groups. Each group was exposed to a different temperature where it was placed in a large oven for two hours. Three different tests were carried out on the samples, these tests were concrete compressive strength, flexural strength and splitting tensile strength.FindingsExposure of concrete to high temperatures had a significant influence on concrete mechanical properties. Specimens prepared using magnetic water showed higher compressive strength at all temperature levels. The use of magnetic water in casting and curing concrete can increase the compressive strength by 23%. Specimens prepared using magnetic water show higher splitting tensile strength at all temperatures up to 33%. The use of magnetic water in casting and curing can strengthen and increase concrete resistance to high temperatures, a significant enhancement in flexural strength at all temperatures was found with a value up to 40%.Originality/valuePrevious research proved the advantages of using magnetic water for improving the mechanical properties of concrete under normal conditions. The potential of using magnetic water in the concrete industry in the future requires conducting extensive research to study the behavior of magnetized concrete under severe conditions to which concrete structures may be subjected to. These days, there are attempts to obtain stronger concrete with high resistance to harsh environmental conditions without adding new costly ingredients to its main mixture. No research has been carried out to investigate the effect of magnetic water on the mechanical properties of concrete exposed to elevated temperature. The main objective of this study is to evaluate the effect of using magnetic water on the mechanical properties of hardened concrete subjected to elevated temperature.


2017 ◽  
Vol 908 ◽  
pp. 118-122 ◽  
Author(s):  
Giedrius Balčiūnas ◽  
Viktor Kizinievič ◽  
Justinas Gargasas

Scientific literature mostly aims at investigation of composites with fibre hemp shives (FHS) aggregate and lime binder, although, such materials are characterised by pretty low mechanical properties. In order to obtain higher mechanical properties of a composite, it is appropriate to use cementitious binder. This work investigates physical properties of blocks from hemp shives aggregate and cementitious binder, manufactured in the expanded clay production line using vibro pressing technology. Following properties of the blocks are determined: freeze-thaw resistance, compressive strength, thermal conductivity and density. Thermal resistance according to EN ISO 6946 for the block with cavities is calculated as well. It is found that compressive strength of FHS-cement blocks may be up to 3.18 MPa when the density is of ~850 kg/m3 and thermal conductivity up to 0.135 W/(m∙K). It is found as well that the decrease of compressive strength is 8.7% after 25 freeze-thaw cycles.


2019 ◽  
Vol 25 (4) ◽  
pp. 744-751 ◽  
Author(s):  
Xiaomiao Niu ◽  
Hongyao Shen ◽  
Guanhua Xu ◽  
Linchu Zhang ◽  
Jianzhong Fu ◽  
...  

Purpose Mg-Al powder mixture was used to manufacture Mg-Al alloy by laser powder bed fusion (LPBF) process. This study aims to investigate the influence of initial Al content and processing parameters on the formability, microstructure and consequent mechanical properties of the laser powder bed fused (LPBFed) component. Design/methodology/approach In this study, Al powder with different weight ratio ranged from 3 to 9 per cent was mixed with pure Mg powder, and the powder mixture was processed using different LPBF parameters. Microstructure and compressive properties of the LPBFed components were examined. Findings It was found that the presence of Al significantly modified the microstructure and improved the mechanical properties of the LPBFed components. Higher volume of ß-Al12Mg17 precipitates was produced at higher initial Al content and higher laser energy density. For this reason, the a-Mg was significantly refined and the compressive strength was improved. The highest yield compressive strength achieved was 279 MPa when using Mg-9 Wt. % Al mixture. Originality/value This work demonstrates that LPBF of Mg-Al powder mixture was a viable way to additively manufacture Mg-Al alloy. Both Al content and processing parameters can be modified to control the microstructure and mechanical properties of the LPBFed components.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Ruijun Wang ◽  
Yan Li ◽  
Yang Li ◽  
Fan Xu ◽  
Xiaotong Li ◽  
...  

This study aims at determining the effect of water pressure on the mechanical properties of concrete subjected to freeze-thaw (F-T) attack under the dynamic triaxial compression state. Two specimens were used: (1) a 100 mm × 100 mm × 400 mm prism for testing the loss of mass and relative dynamic modulus of elasticity (RDME) after F-T cycles and (2) cylinders with a diameter of 100 mm and a height of 200 mm for testing the dynamic mechanical properties of concrete. Strain rates ranged from 10−5·s−1 to 10−3·s−1, and F-T cycles ranged from 0 to 100. Three levels of water pressure (0, 5, and 10 MPa) were applied to concrete. Results showed that as the number of F-T cycles increased, the mass loss rate of the concrete specimen initially decreased and then increased, but the RDME decreased. Under 5 MPa of water pressure and at the same strain rate, the ultimate compressive strength decreased, whereas the peak strain increased with the increase in the number of F-T cycles. This result is contrary to the variation law of ultimate compressive strength and peak strain with the increase in strain rate under the same number of F-T times. With the increase in F-T cycles or water pressure, the strain sensitivity of the dynamic increase factor of ultimate compressive strength and peak strain decreased, respectively. After 100 F-T cycles, the dynamic compressive strength under all water pressure levels tended to increase as the strain rate increased, whereas the peak strain decreased gradually.


2021 ◽  
Vol 2 (1) ◽  
pp. 64-74
Author(s):  
Nepomyach Alexander Nikolaevich ◽  
Vyrovoy Valeriy Nikolaevich ◽  
Chistyakov Artem Aleksaedrovich

Abstract The work investigates changes in the beam structure under the action of local freezing, which leads to a change of the mechanical properties of the material and, consequently, of the beam structure. Two types of beam samples were used: from cement-sand mortar and from concrete. The work investigates the change in the development of deformations depending on the conditions of freezing of samples. The second accelerated method for assessing frost resistance was chosen according to DSTU B В.2.7-47-96. An accelerated method was chosen for assessing frost resistance at the temperature of -20 ±2 C°. After every five freeze-thaw cycles, the following changes were monitored: mass, water absorption, ultrasound transmission rate, damage coefficient, tensile bending strength, splitting strength, compressive strength, carbonization depth. The results showed that both in concrete and in mortar samples, the compressive strength after freezing was lower by 8% and 15% accordingly. The experimental results obtained confirm the assumptions made that the frost resistance of the material depends on the conditions of exposure of negative temperatures on products and structures and it can be used in a wider range of construction which will push regional development.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1314
Author(s):  
Ikuho Nakahata ◽  
Yusuke Tsutsumi ◽  
Equo Kobayashi

Recent studies indicate that biodegradable magnesium alloys and composites are attracting a great deal of attention in orthopedic applications. In this study, magnesium–hydroxyapatite (Mg–HAP) composites with different compositions and grain size were fabricated by a spark plasma sintering (SPS) method. Their mechanical properties and corrosion behavior in a pseudo-physiological environment were investigated by pH measurements and inductivity coupled plasma (ICP) elemental analysis after an immersion test using Hanks’ solution. The results clearly showed that the addition of HAP improved both the mechanical properties and corrosion resistance. The results also indicated that the finer grain size improved most of the properties that are needed in a material for an orthopedic implant. Furthermore, the authors reveal that there is a strong correlation between the compressive strength and the porosity. In order to achieve the same compressive strength as human bone using these fabrication conditions, it is revealed that the porosity should be lower than 1.9%.


2010 ◽  
Vol 113-116 ◽  
pp. 1293-1296
Author(s):  
Yu Zhu ◽  
Ying Zi Yang ◽  
Hong Wei Deng ◽  
Yan Yao

In order to investigate the mechanical properties of cementitious composites (ECC) cured at 60°C, four-point bending test and compressive strength test are employed to analyze the effect of fly ash on the properties of ECC. The replacement ratio of cement with fly ash is 50%, 70% and 80%, respectively. The test results indicate that ECC with high volume fly ash still remain the characteristic of pseudo-strain hardening and the deflection of ECC increases remarkably by adding more fly ash. The observations of ECC indicate that the crack width is relatively smaller for higher volume fly ash ECC. Meanwhile, compressive strength of ECC specimens with 80% fly ash can reach to 70MPa. This is helpful to produce precast ECC with high volume of fly ash.


2017 ◽  
Vol 8 (4) ◽  
pp. 418-439 ◽  
Author(s):  
Muhammad Masood Rafi ◽  
Tariq Aziz ◽  
Sarosh Hashmat Lodi

Purpose This paper aims to present the results of testing of low-strength concrete specimens exposed to elevated temperatures. These data are limited in the existing literature and do not exist in Pakistan. Design/methodology/approach An experimental testing programme has been employed. Cylindrical specimens of 100 × 200 mm were used in the testing programme. These were heated at temperatures which were varied from 100°C to 900°C in increment of 100°C. Similar specimens were tested at ambient temperature as control specimens. The compressive and tensile properties of heat treated specimens were determined. Findings The colour of concrete started to change at 300°C and hairline cracks appeared at 400°C. Explosive spalling was observed in few specimens in the temperature range of 400°C-650°C which could be attributed to the pore pressure generated by steam. Significant loss of concrete compressive strength occurred on heating temperatures larger than 600°C, and the residual compressive strength was found to be 15 per cent at 900°C. Residual tensile strength of concrete became less than 10 per cent at 900°C. The loss of concrete stiffness reached 85 per cent at 600°C. Residual Poisson’s ratio of concrete increased at high temperatures and became nearly six times larger at 900°C as compared to that at ambient temperature. Research limitations/implications The parameters of the study included heating temperature and effects of temperature on strength and stiffness properties of the concrete specimens. Practical implications Building fire incidents have increased in Pakistan. As a large number of reinforced concrete (RC) buildings exist in the country, the data related to elevated temperature properties of concrete are required. These data are not available in Pakistan presently. The study aims at providing this information for the design engineers to enable them to assess and increase fire resistance of RC structural members. Originality/value The presented study is unique in its nature in that there is no published contribution to date, to the best of authors’ knowledge, which has been carried out to assess the temperature-dependent mechanical properties of concrete in Pakistan.


2014 ◽  
Vol 912-914 ◽  
pp. 131-135
Author(s):  
Xiang Ping Fu ◽  
Xiao Xue Liu ◽  
Yi Ze Sun ◽  
Pei Huang ◽  
Yu Chen Li ◽  
...  

The experiment studies how the freeze-thaw cycles influence concrete compressive strength and elasticity modulus with different water-cement ratio under the air-entraining agent and zero of that value respectively. It can be found that modulus of elasticity and compressive strength of the concrete specimen reduced significantly when there is air-entraining agent; the durability of freeze-thaw resistance, however, makes great improvement; as the cement increases, both of them improves effectively. Through the comparison of concrete compressive strength and elastic modulus with different water-cement ratio and air-entraining agent, the optimal water-cement ratio and air-entraining agent were determined. The results of experiment can be used in concrete engineering design in severe cold area.


Sign in / Sign up

Export Citation Format

Share Document