Investigations on tribological behaviour of AA7075-TiO2 composites under dry sliding conditions

2019 ◽  
Vol 71 (9) ◽  
pp. 1064-1071 ◽  
Author(s):  
Alagarsamy S.V. ◽  
Ravichandran M.

Purpose Aluminium and its alloys are the most preferred material in aerospace and automotive industries because of their high strength-to-weight ratio. However, these alloys are found to be low wear resistance. Hence, the incorporation of ceramic particles with the aluminium alloy may be enhanced the mechanical and tribological properties. The purpose of this study is to optimize the specific wear rate and friction coefficient of titanium dioxide (TiO2) reinforced AA7075 matrix composites. The four wear control factors are considered, i.e. reinforcement (Wt.%), applied load (N), sliding velocity (m/s) and sliding distance (m). Design/methodology/approach The composites were fabricated through stir casting route with varying weight percentages (0, 5, 10 and 15 Wt.%) of TiO2 particulates. The mechanical properties of the composites were studied. The specific wear rate and friction coefficient of the newly prepared composites was determined by using a pin-on-disc apparatus under dry sliding conditions. Experiments were planned as per Taguchi’s L16 orthogonal design. Signal-to-noise ratio analysis was used to find the optimal combination of parameters. Findings The mechanical properties such as yield strength, tensile strength and hardness of the composites significantly improved with the addition of TiO2 particles. The analysis of variance result shows that the applied load and reinforcement Wt.% are the most influencing parameters on specific wear rate and friction coefficient during dry sliding conditions. The scanning electron microscope morphology of the worn surface shows that TiO2 particles protect the matrix from more removal of material at all conditions. Originality/value This paper provides a solution for optimal parameters on specific wear rate and friction coefficient of aluminium matrix composites (AMCs) using Taguchi methodology. The obtained results are useful in improving the wear resistance of the AA7075-TiO2 composites.

2014 ◽  
Vol 490-491 ◽  
pp. 83-87
Author(s):  
Qing Lin Li ◽  
Tian Dong Xia ◽  
Ye Feng Lan ◽  
Yi Sheng Jian

The effects of the primary Si phase and applied load on the dry sliding wear behaviors of hypereutectic Al-20Si alloy were investigated. The results show that coarse polygonal and star-like primary Si was refined into fine blocky shape by increasing superheat treatment temperature. The friction coefficient and wear rate significantly decrease after decreasing the size and changing the morphology of primary Si. Moreover, the friction coefficient and wear rate increase with the increase of applied load. Therefore, the wear properties are greatly influenced by the parameters like morphology and size of primary Si as well as applied load.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaocui Xin ◽  
Yunxia Wang ◽  
Zhaojie Meng ◽  
Hao Liu ◽  
Yunfeng Yan ◽  
...  

Purpose This paper aims to focus on studying the addition of nano-tungsten disulfide (WS2) on fretting wear performance of ultra-high-molecular-weight-polyethylene (UHMWPE). Design/methodology/approach In this study, the effect of WS2 content on fretting wear performance of UHMWPE was investigated. The fretting wear performance of the UHMWPE and WS2/UHMWPE nanocomposites were evaluated on oscillating reciprocating friction and wear tester. The data of the friction coefficient and the specific wear rate were obtained. The worn surfaces of composites were observed. The transfer film and its component were analyzed. Findings With the addition of 0.5% WS2, the friction coefficient and specific wear rate increased. With the content increased to 1% and 1.5%, the friction coefficient and specific wear rate decreased. The lowest friction coefficient and specific wear rate were obtained with the addition of 1.5% nano-WS2. Continuingly increasing content, the friction coefficient and wear rate increased but lower than that of pure UHMWPE. Research limitations/implications The research indicated the fretting wear performance related to the content of nano-WS2 with the incorporation of WS2 into UHMWPE. Practical implications The result may help to choose the appropriate content. Originality/value The main originality of the research is to reveal the fretting behavior of UHMWPE and WS2/UHMWPE nanocomposites. It makes us realize the nano-WS2 had an effect on the fretting wear performance of UHMWPE. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0151/


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1805
Author(s):  
Yu ◽  
Zhang ◽  
Tang ◽  
Gao

(1) In order to improve the properties of antifriction and wear resistance of polyimide (PI) composite under high temperature conditions, (2) 3-Aminopropyltriethoxysilane (APTES) and Lanthanum (La) salt modifications were employed to manufacture poly-p-phenylenebenzobisoxazole (PBO)/PI composites with different interface properties. The representative ambient temperatures of 130 and 260 °C were chosen to study the friction and wear behavior of composites with different interface properties. (3) Results revealed that while both modification methods can improve the chemical activity of the surface of PBO fibers, the La salt modification is more effective. The friction coefficient of all composites decreases with the increase of sliding velocity and load at two temperatures, and the specific wear rate is increases. Contrary to the situation in the 130 °C environment, the wear resistance of the unmodified composite in the 260 °C environment is greatly affected by the sliding velocity and load, while the modified composites are less affected. Under the same test parameters, the PBO–La/PI composite has the lowest specific wear rate and friction coefficient, and (4) La salt modification is a more effective approach to improve the properties of antifriction and wear resistance of PI composite than APTES modification in high ambient temperatures.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhishuang Wang ◽  
Songhua Li ◽  
Jian Sun ◽  
Junhai Wang ◽  
Yonghua Wang ◽  
...  

Purpose The purpose of this study is to investigate the effects of load and rotation speed on dry sliding of silicon nitride, including a series of tribological behaviors (friction coefficient, wear rate, temperature rise, etc.) and wear mechanism. Through the analysis of the above characteristics, the influence law of load and speed on them and the internal relationship between them are determined, and then the best comprehensive performance parameters of silicon nitride full-ceramic spherical plain bearings in dry sliding are predicted, which can provide guidance for the operation condition of silicon nitride full-ceramic spherical plain bearings in dry sliding. Design/methodology/approach The experimental study of different loads and rotation speeds under dry friction conditions was carried out by the using ball-disk sliding test method. Findings With the increase of load, the friction coefficient of silicon nitride friction pair and the wear rate of silicon nitride ball decrease continuously. With the increase of rotation speed, the friction coefficient of silicon nitride friction pair first increases and then decreases, and the wear of silicon nitride ball first increases and then decreases. With the increase of load and rotation speed, the wear mechanism eventually changes to adhesive wear. Originality/value Because of the low timeliness and inefficiency of bearing experiments, this work adopts a simple ball-disk model to comprehensively explore the influence rules of different conditions, which provides a theoretical basis for the subsequent practical application of silicon nitride full-ceramic spherical plain bearings.


2019 ◽  
Vol 895 ◽  
pp. 200-205
Author(s):  
B.S. Kanthraju ◽  
Bheemappa Suresha ◽  
H.M. Somashekar

This paper presents the effect of zirconia filler on mechanical properties and dry sliding wear of bidirectional hybrid (glass and basalt fiber) fabric reinforced epoxy (G-B/E) composites. Fabrication was done by hand layup method followed by compression molding. The effect of zirconia filler loading on mechanical characteristics like hardness, tensile and flexure of fabricated G-B/E composites were determined according to ASTM standards. Also, wear behavior under dry sliding condition was performed using pin-on-disc machine for different applied normal loads/sliding distance. Experimental results reveal that incorporation of zirconia filler improves the mechanical properties. Further, the wear test results indicated addition of zirconia into G-B/E hybrid fiber composites plays important role on specific wear rate under the tribo-conditions selected for the study. Further, inclusion of zirconia into G-B/E composites shows improved wear resistance and addition of 6 wt. % of zirconia exhibits least specific wear rate compared to other hybrid G-B/E composites. In addition, Scanning electron microscope images of selected mechanical test fractured coupons also have been discussed.


2019 ◽  
Vol 32 (1) ◽  
pp. 21-29
Author(s):  
Yuqi Li ◽  
Qiu Zhang ◽  
Hong Ruan ◽  
Fengan Li ◽  
Xu Xu ◽  
...  

To explore the effect of added graphene sheets (GNs) and added perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) on the tribological and mechanical performances of polyimide (PI) matrix, GNs and PTCDA reinforced PI-based composites were synthesized via the blending method. The tribological properties of GNs/PTCDA/PI (GAPI) composites with different weight ratios of GNs and PTCDA under dry sliding, deionized water lubrication, and kerosene lubrication were comparatively investigated. A synergism was found between GNs and PTCDA; this synergism endowed filled PI composites with a lower friction coefficient and showed an improved wear rate under different lubrication conditions, especially when the weight ratio of GNs and PTCDA was 1:1 (GAPI-1). Under dry sliding, deionized water lubrication, and kerosene lubrication, the friction coefficient of GAPI-1 composites decreased by 41.1%, 70%, and 35.7%, respectively, while the wear rate decreased by 39%, 50%, and 25.1%, respectively. Meanwhile, the tensile strength, tensile modulus, and the elongation at break of GAPI-1 films increased by 40.8%, 51.3%, and 49.2%, respectively, relative to those of pure PI. We anticipate that this work can be used to exploit a simple and effective method for preparing materials for bearings and transmission parts that possess good tribological properties under harsh lubrication conditions.


Author(s):  
Meng Xu ◽  
Jiajun Zhu ◽  
Wulin Yang ◽  
Deyi Li ◽  
Lingping Zhou ◽  
...  

The wear behavior of Ag implantation GH4169 alloy by ion beam assisted bombardment was measured under lower applied load and sliding speed. The wear rate of GH4169 alloy decreased from 2.58 × 10−4 mm3·m−1 to 6.25 ×10−5 mm3·m−1 after Ag implantation. The friction coefficient had not mostly been changed. After Ag implantation, Ag and Ag2O were detected on the worn surface of GH4169 alloy, which benefits the formation of continuous lubrication and protected layers. The predominant wear mechanism changed from abrasion and adhesion wear to oxidation and adhesion wear. In addition, the hardness increased. So, the wear resistance of GH4169 alloy under lower applied load and sliding speed can be improved with Ag implantation by ion beam assisted bombardment.


2008 ◽  
Vol 403 ◽  
pp. 115-116
Author(s):  
Qian Liu ◽  
Lin Hua Gui ◽  
Jun Hu Meng ◽  
Zhi Feng Li

A considerable test was made to figure out the effects of temperature and sliding conditions on the wear properties of the translucent Dy--Sialon. The friction coefficient was 0.54 at RT, 0.26 at 100 oC, and 0.81 at 600 oC respectively under an applied load of 5N. The wear rate was 6.91×10-15 at RT and 1.0×10-15 at 100 oC for the same Dy--Sialon sample. Obviously Dy-Sialon shows an excellent wear resistance under a suitable sliding condition, a load of 5N and at 100 oC. This appears attractive and important for Dy-Sialon ceramics to be used as a type of special wear resistant materials, with an optical translucence.


2016 ◽  
Vol 852 ◽  
pp. 435-445 ◽  
Author(s):  
P. Sangaravadivel ◽  
N. Natarajan ◽  
V. Krishnaraj

This present study aims to investigate the dry sliding wear behaviour of tungsten disulfide (WS2) particle reinforced bronze matrix composite against surface hardened steel and to discover the optimum wear parameter values such as applied load, sliding distance, sliding velocity and volume fraction of reinforcement to reduce the specific wear rate. The composite specimens were fabricated by liquid metallurgy route by varying the volume fraction of solid lubricant particles and prepared as per American Society for Testing of Materials (ASTM) G99-95. The experiments were carried out based on Taguchi design of experiments technique with L27 orthogonal array. The wear tests were conducted in pin-on disc wear testing machine for different loads - 20N, 40N and 60N, sliding velocities - 2.09m/s, 2.62 m/s and 3.14m/s and sliding distances of 600m, 1200m and 1800m in unlubricated conditions. The significant influence of wear parameters on sliding wear, interactions and optimum combination of wear parameter values to minimize the wear rate were obtained by signal-to-noise (S/N) ratio and analysis of variance (ANOVA). The results demonstrated that inclusion of tungsten disulfide particles decreased the wear rate of bronze and also the increases in amount of secondary phase increase the wear resistance of composites. The effect of solid lubricant particle on interfacial temperature was also studied and reported. It was found that percentage of solid lubricant and load are the most significant factors influencing the friction and wear properties of composites. The results revealed that, WS2 particle reinforced bronze matrix composites were the potential component can be replaced for pure bronze products in wear resistance applications.


2011 ◽  
Vol 391-392 ◽  
pp. 364-368 ◽  
Author(s):  
Lan Jiang ◽  
Yu Juan Shi ◽  
Jian Ding ◽  
Chun Bing ◽  
Gao Feng Fu

Aluminium matrix composites reinforced by Al2O3 particles has been produced by adding NH4AlO(OH)HCO3 into molten ADC12 Al-Si alloy, where the γ-Al2O3 reinforcement particles are formed by decomposing reaction of NH4AlO(OH)HCO3 during stirring. The results show that the Al2O3 particles are distributed more uniformly in the matrix than that by direct adding of Al2O3 particles. Hardness and wear properties have also been examined and the results show that the hardness of the composites increases with increasing volume fraction of the reinforced particles. Wear rate of the composites decreases with increasing volume fraction of the reinforced particles and increases with the applied load. The mechanical properties of the composites prepared by adding of NH4AlO(OH)HCO3 are superior and more wearable than that prepared by direct adding of Al2O3 particles. Wearing mechanism of the surfaces of the unreinforced alloy and composites is dominantly abrasive.


Sign in / Sign up

Export Citation Format

Share Document