Additive manufacturing infill optimization for automotive 3D-printed ABS components

2020 ◽  
Vol 26 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Matt Schmitt ◽  
Raj Mattias Mehta ◽  
Il Yong Kim

Purpose Lightweighting of components in the automotive industry is a prevailing trend influenced by both consumer demand and government regulations. As the viability of additively manufactured designs continues to increase, traditionally manufactured components are continually being replaced with 3D-printed parts. The purpose of this paper is to present experimental results and design considerations for 3D-printed acrylonitrile butadiene styrene (ABS) components with non-solid infill sections, addressing a large gap in the literature. Information published in this paper will guide engineers when designing fused deposition modeling (FDM) ABS parts with infill regions. Design/methodology/approach Uniaxial tensile tests and three-point bend tests were performed on 12 different build configurations of 20 samples. FDM with ABS was used as the manufacturing method for the samples. Failure strength and elastic modulus were normalized on print time and specimen mass to quantify variance between configurations. Optimal infill configurations were selected and used in two automotive case study examples. Findings Results obtained from the uniaxial tensile tests and three-point bend tests distinctly showed that component strength is highly influenced by the infill choice selected. Normalized results indicate that solid, double dense and triangular infill, all with eight contour layers, are optimal configurations for component regions experiencing high stress, moderate stress and low stress, respectively. Implementation of the optimal infill configurations in automotive examples yielded equivalent failure strength without normalization and significantly improved failure strength on a print time and mass normalized index. Originality/value To the best of the authors’ knowledge, this is the first paper to experimentally determine and quantify optimal infill configurations for FDM ABS printed parts. Published data in this paper are also of value to engineers requiring quantitative material properties for common infill configurations.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2556
Author(s):  
Arda Özen ◽  
Dietmar Auhl ◽  
Christina Völlmecke ◽  
Josef Kiendl ◽  
Bilen Emek Abali

Additive manufacturing provides high design flexibility, but its use is restricted by limited mechanical properties compared to conventional production methods. As technology is still emerging, several approaches exist in the literature for quantifying and improving mechanical properties. In this study, we investigate characterizing materials’ response of additive manufactured structures, specifically by fused deposition modeling (FDM). A comparative analysis is achieved for four different tensile test specimens for polymers based on ASTM D3039 and ISO 527-2 standards. Comparison of specimen geometries is studied with the aid of computations based on the Finite Element Method (FEM). Uniaxial tensile tests are carried out, after a careful examination of different slicing approaches for 3D printing. We emphasize the effects of the chosen slicer parameters on the position of failures in the specimens and propose a simple formalism for measuring effective mechanical properties of 3D-printed structures.


2021 ◽  
pp. 089270572110625
Author(s):  
Ajay Jayswal ◽  
Sabit Adanur

Polylactic acid (PLA) and thermoplastic polyurethane (TPU) were mixed in different proportions and extruded through twin-screw and single-screw extruders to obtain composite filaments to be used for 3D printing with fused deposition modeling (FDM) method. The properties of the filaments were characterized using uniaxial tensile tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), rheology, polarized optical microscope (POM), and scanning electron microscope (SEM). 3D printed samples from composite filaments were tested using dynamic mechanical analysis (DMA). It was found that the tensile strength and modulus of the filaments decrease while elongation at break increases with the increasing TPU content in the composite. The analysis also showed a partial miscibility of the polymer constituents in the solution of composite filaments. Finally, a flexible structure, plain weave fabric, was designed and 3D printed using the composite filaments developed which proved that the filaments are well suited for 3D printing.


2020 ◽  
Vol 26 (8) ◽  
pp. 1453-1462
Author(s):  
Jared W. Nelson ◽  
Dylan Atkins ◽  
Matthew L. Gottstine ◽  
Jack Yang ◽  
Gordana Garapic ◽  
...  

Purpose The purpose of this paper is to empirically determine general models and methods for yield strength and modulus at different print orientations adequate for design purposes associated with typical fused deposition modeled (FDM) components/parts. Emphasis was placed on characterizing the impacts of anisotropy and resulting trends independent of material toward developing a method that matched the level of engineering required for current limited structural capabilities of FDM. Design/methodology/approach Tensile tests were performed with a range of unidirectional filament orientations of three different materials allowing for determination of the generalized models, which are then compared to previous findings of others. Findings Though anisotropic trends were similar to previous findings, minimum yield strength was found to be associated with filaments 75° from the loading direction resulting in a sinusoidal generalization. Modulus was found to be best approximated with an exponential decay. Resulting models allow for determination of yield strength and modulus in any orientation of FDM-printed material based on minimal testing. Originality/value This study is the widest range of angles and materials to be tested and analyzed for unidirectional FDM allowing for new trends to be identified. In line with the level of engineering required for most FDM components/parts, the resulting generalized models allow for determination of yield strength and modulus with less computation and minimal testing.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sebastián Tognana ◽  
Susana Montecinos ◽  
Rosana Gastien ◽  
Walter Salgueiro

Abstract Commonly used 3D printed samples are partially infilled to reduce time and cost of printing, with mechanical properties dependent on the infill. In this work, the influence of the percentage and pattern of infill in PLA printed samples on the elastic modulus and characteristic stresses was analyzed. The elastic modulus, E, and characteristic stresses (σ 0.2, σ 4 and the maximum tensile stress) were determined for each sample using impulse excitation technique, IET, and uniaxial tensile tests. An apparent density was calculated for each pattern and infill percentage, and the mechanical parameters were studied as a function of such density. The results of IET obtained in different modes of vibration were analyzed and an apparent value of E was calculated. FEM simulations were carried out and the results were compared with the experimental ones. The mechanical properties for different infill percentages and infill patterns were studied by comparing the specific values of E and the stresses. Samples with higher infill percentages exhibit the best specific values of maximum stress and E, but the sample with 20% infill has the highest specific yield stress and a good value of the specific E from flexural vibrations.


2021 ◽  
Vol 11 (6) ◽  
pp. 2563
Author(s):  
Ivan Grgić ◽  
Vjekoslav Wertheimer ◽  
Mirko Karakašić ◽  
Željko Ivandić

Recent soft tissue studies have reported issues that occur during experimentation, such as the tissue slipping and rupturing during tensile loads, the lack of standard testing procedure and equipment, the necessity for existing laboratory equipment adaptation, etc. To overcome such issues and fulfil the need for the determination of the biomechanical properties of the human gracilis and the superficial third of the quadriceps tendons, 3D printed clamps with metric thread profile-based geometry were developed. The clamps’ geometry consists of a truncated pyramid pattern, which prevents the tendons from slipping and rupturing. The use of the thread application in the design of the clamp could be used in standard clamping development procedures, unlike in previously custom-made clamps. Fused deposition modeling (FDM) was used as a 3D printing technique, together with polylactic acid (PLA), which was used as a material for clamp printing. The design was confirmed and the experiments were conducted by using porcine and human tendons. The findings justify the usage of 3D printing technology for parts manufacturing in the case of tissue testing and establish independence from the existing machine clamp system, since it was possible to print clamps for each prepared specimen and thus reduce the time for experiment setup.


2018 ◽  
Vol 24 (2) ◽  
pp. 477-484
Author(s):  
Hossein Goodarzi Hosseinabadi ◽  
Reza Bagheri ◽  
Volker Altstädt

Purpose Hexagonal honeycombs with meso-metric cell size show excellent load bearing and energy absorption potential, which make them attractive in many applications. However, owing to their bend-dominated structure, honeycombs are susceptible to deformation localization. The purpose of this study is to provide insight about shear band propagation in struts of 3D-printed honeycombs and its relation to the achieved macroscopic mechanical behavior. Design/methodology/approach Hexagonal honeycombs and unit cell models are 3D-printed by fused deposition modeling (FDM). The samples are exposed to compression loading and digital image correlation technique and finite element analyses are incorporated. Findings It is found that the strain contours, which are obtained by finite element, are in agreement with experimental measurements made by DIC. In addition, three stages of shear band propagation in struts of 3D-printed honeycombs are illustrated. Then the correlation between shear band propagation stages and the achieved macroscopic mechanical responses is discussed in detail. Originality/value For the first time, a hierarchical activation of different modes of shear band propagation in struts of a 3D-printed honeycomb is reported. This information can be of use for designing a new generation of honeycombs with tailor-made localization and energy absorption potential.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nitin Dixit ◽  
Varun Sharma ◽  
Pradeep Kumar

Purpose The surface roughness of additively manufactured parts is usually found to be high. This limits their use in industrial and biomedical applications. Therefore, these parts required post-processing to improve their surface quality. The purpose of this study is to finish three-dimensional (3D) printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) parts using abrasive flow machining (AFM). Design/methodology/approach A hydrogel-based abrasive media has been developed to finish 3D printed parts. The developed abrasive media has been characterized for its rheology and thermal stability using sweep tests, thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The ABS and PLA cylindrical parts have been prepared using fused deposition modeling (FDM) and finished using AFM. The experiments were designed using Taguchi (L9 OA) method. The effect of process parameters such as extrusion pressure (EP), layer thickness (LT) and abrasive concentration (AC) was investigated on the amount of material removed (MR) and percentage improvement in surface roughness (%ΔRa). Findings The developed abrasive media was found to be effective for finishing FDM printed parts using AFM. The microscope images of unfinished and finished showed a significant improvement in surface topography of additively manufactures parts after AFM. The results reveal that AC is the most significant parameter during the finishing of ABS parts. However, EP and AC are the most significant parameters for MR and %ΔRa, respectively, during the finishing of PLA parts. Practical implications The FDM technology has applications in the biomedical, electronics, aeronautics and defense sectors. PLA has good biodegradable and biocompatible properties, so widely used in biomedical applications. The ventilator splitters fabricated using FDM have a profile similar to the shape used in the present study. Research limitations/implications The present study is focused on finishing FDM printed cylindrical parts using AFM. Future research may be done on the AFM of complex shapes and freeform surfaces printed using different additive manufacturing (AM) techniques. Originality/value An abrasive media consists of xanthan gum, locust bean gum and fumed silica has been developed and characterized. An experimental study has been performed by combining printing parameters of FDM and finishing parameters of AFM. A comparative analysis in MR and %ΔRa has been reported between 3D printed ABS and PLA parts.


2021 ◽  
Vol 27 (3) ◽  
pp. 465-474
Author(s):  
Martin Krčma ◽  
David Škaroupka ◽  
Petr Vosynek ◽  
Tomáš Zikmund ◽  
Jozef Kaiser ◽  
...  

Purpose This paper aims to focus on the evaluation of a polymer concrete as a three-dimensional (3D) printing material. An associated company has developed plastic concrete made from reused unrecyclable plastic waste. Its intended use is as a construction material. Design/methodology/approach The concrete mix, called PolyBet, composed of polypropylene and glass sand, is printed by the fused deposition modelling process. The process of material and parameter selection is described. The mechanical properties of the filled material were compared to its cast state. Samples were made from castings and two different orientations of 3D-printed parts. Three-point flex tests were carried out, and the area of the break was examined. Computed tomography of the samples was carried out. Findings The influence of the 3D printing process on the material was evaluated. The mechanical performance of the longitudinal samples was close to the cast state. There was a difference in the failure mode between the states, with cast parts exhibiting a tougher behaviour, with fractures propagating in a stair-like manner. The 3D-printed samples exhibited high degrees of porosity. Originality/value The results suggest that the novel material is a good fit for 3D printing, with little to no degradation caused by the process. Layer adhesion was shown to be excellent, with negligible effect on the finished part for the longitudinal orientation. That means, if large-scale testing of buildability is successful, the material is a good fit for additive manufacturing of building components and other large-scale structures.


Circuit World ◽  
2019 ◽  
Vol 45 (1) ◽  
pp. 9-14
Author(s):  
Jakub Krzeminski ◽  
Bartosz Blicharz ◽  
Andrzej Skalski ◽  
Grzegorz Wroblewski ◽  
Małgorzata Jakubowska ◽  
...  

Purpose Despite almost limitless possibilities of rapid prototyping, the idea of 3D printed fully functional electronic device still has not been fulfilled – the missing point is a highly conductive material suitable for this technique. The purpose of this paper is to present the usage of the photonic curing process for sintering highly conductive paths printed on the polymer substrate. Design/methodology/approach This paper evaluates two photonic curing processes for the conductive network formulation during the additive manufacturing process. Along with the xenon flash sintering for aerosol jet-printed paths, this paper examines rapid infrared sintering for thick-film and direct write techniques. Findings This paper proves that the combination of fused deposition modeling, aerosol jet printing or paste deposition, along with photonic sintering, is suitable to obtain elements with low resistivity of 3,75·10−8 Ωm. Presented outcomes suggest the solution for fabrication of the structural electronics systems for daily-use applications. Originality/value The combination of fused deposition modelling (FDM) and aerosol jet printing or paste deposition used with photonic sintering process can fill the missing point for highly conductive materials for structural electronics.


2018 ◽  
Vol 24 (1) ◽  
pp. 195-203 ◽  
Author(s):  
Marco Leite ◽  
André Varanda ◽  
António Relógio Ribeiro ◽  
Arlindo Silva ◽  
Maria Fátima Vaz

Purpose The purpose of this paper is to investigate the effect of a sealing protective treatment on the water absorption and mechanical properties of acrylonitrile butadiene styrene (ABS)-printed parts by fused deposition modelling. Protective products include aqueous acetone solutions with different concentrations, polyurethane wood sealer and aqueous acrylic-based varnish. Design/methodology/approach Open porosity was estimated by the absorption coefficient and the total amount of water retained, obtained from water absorption tests. Mechanical characterization was performed by compressive and tensile tests. Different specimens with different build directions and raster angles were used. Findings The treatments with acetone solutions were not effective in reducing the porosity of ABS parts, as the amount of acetone that reduces effectively the porosity will also affect the sample dimensional stability. The polyurethane treatment was found to reduce the absorption coefficient, but the maximum water content and the open porosity remain almost unchanged in comparison with the ones obtained for untreated specimens. The treatment with an acrylic-based varnish was found to preserve the dimensional stability of the specimens, to reduce the open porosity and to maintain the compression and tension properties of the specimens in different build directions and raster angles. Originality/value Surface modification for water tight applications of ABS 3D printing parts enables new designs where both sealing and the preservation of mechanical properties are important. As per the knowledge of the authors, the water absorption and the mechanical behaviour of ABS 3D printed parts, before and after treatment, were not previously investigated.


Sign in / Sign up

Export Citation Format

Share Document