Mechanical reliability of solder joints in PCBs assembled in surface mount technology

2016 ◽  
Vol 28 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Janusz Borecki ◽  
Tomasz Serzysko

Purpose – The purpose of this paper is to determine the dependence of mechanical strength of solder joints on printed circuit boards from the soldering process parameters and operating conditions of the electronic device. Design/methodology/approach – The research was performed using the Taguchi method of planning of experiments. Evaluation of the quality of solder joints was made on the basis of microscopic observations, X-ray analysis and measurements of shear force of solder joints. Findings – The carried out research has shown the influence of the individual parameters of the soldering process on the mechanical strength of solder joints and the mechanism of damage of solder joints under the influence of shear force. Originality/value – The authors present results of their research using advanced techniques of experimental design and analysis of results. In this study, original approach was used to simulate the operational conditions of electronic devices including thermal imaging technology.

Circuit World ◽  
2016 ◽  
Vol 42 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Michal Baszynski ◽  
Edward Ramotowski ◽  
Dariusz Ostaszewski ◽  
Tomasz Klej ◽  
Mariusz Wojcik ◽  
...  

Purpose – The purpose of this paper is to evaluate thermal properties of printed circuit board (PCB) made with use of new materials and technologies. Design/methodology/approach – Four PCBs with the same layout but made with use of different materials and technologies have been investigated using thermal camera to compare their thermal properties. Findings – The results show how important the thermal properties of PCBs are for providing effective heat dissipation, and how a simple alteration to the design can help to improve the thermal performance of electronic device. Proper layout, new materials and technologies of PCB manufacturing can significantly reduce the temperature of electronic components resulting in higher reliability of electronic and power electronic devices. Originality/value – This paper shows the advantages of new technologies and materials in PCB thermal management.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Violeta Carvalho ◽  
Bruno Arcipreste ◽  
Delfim Soares ◽  
Luís Ribas ◽  
Nelson Rodrigues ◽  
...  

Purpose This study aims to determine the minimum force required to pull out a surface mount component in printed circuit boards (PCBs) during the wave soldering process through both experimental and numerical procedures. Design/methodology/approach An efficient experimental technique was proposed to determine the minimum force required to pull out a surface mount component in PCBs during the wave soldering process. Findings The results showed that the pullout force is approximately 0.4 N. Comparing this value with the simulated force exerted by the solder wave on the component ( ≅ 0.001158 N), it can be concluded that the solder wave does not exert sufficient force to remove a component. Originality/value This study provides a deep understanding of the wave soldering process regarding the component pullout, a critical issue that usually occurs in the microelectronics industry during this soldering process. By applying both accurate experimental and numerical approaches, this study showed that more tests are needed to evaluate the main cause of this problem, as well as new insights were provided into the depositing process of glue dots on PCBs.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rabiatul Adawiyah Mohamed Anuar ◽  
Saliza Azlina Osman

Purpose The surface finish is an essential step in printed circuit boards design because it provides a solderable surface for electronic components. The purpose of this study to investigate the effects of different surface finishes during the soldering and ageing process. Design/methodology/approach The solder joints of Sn-4.0Ag-0.5Cu/Cu and Sn-4.0Ag-0.5Cu/electroless nickel/immersion silver (ENImAg) were investigated in terms of intermetallic (IMC) thickness, morphology and shear strength. The microstructure and compositions of solder joints are observed, and analyzed by using scanning electron microscopy (SEM-EDX) and optical microscope (OM). Findings Compounds of Cu6Sn5 and (Cu, Ni)6Sn5 IMC were formed in SAC405/Cu and SAC405/ENImAg, respectively, as-reflowed. When the sample was exposed to ageing, new layers of Cu3Sn and (Ni, Cu)3Sn5 were observed at the interface. Analogous growth in the thickness of the IMC layer and increased grains size commensurate with ageing time. The results equally revealed an increase in shear strength of SAC405/ENImAg because of the thin layer of IMC and surface finish used compared to SAC405/Cu. Hence, a ductile fracture was observed at the bulk solder. Overall, the ENImAg surface finish showed excellent performance of solder joints than that of bare Cu. Originality/value The novel surface finish (ENImAg) has been developed and optimized. This alternative lead-free surface finish solved the challenges in electroless nickel/immersion gold and reduced cost without affecting the performance.


2016 ◽  
Vol 28 (2) ◽  
pp. 41-62 ◽  
Author(s):  
Chun Sean Lau ◽  
C.Y. Khor ◽  
D. Soares ◽  
J.C. Teixeira ◽  
M.Z. Abdullah

Purpose The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review include challenges in modelling of the reflow soldering process, optimization and the future challenges in the reflow soldering process. Besides, the numerical approach of lead-free solder reliability is also discussed. Design/methodology/approach Lead-free reflow soldering is one of the most significant processes in the development of surface mount technology, especially toward the miniaturization of the advanced SMCs package. The challenges lead to more complex thermal responses when the PCB assembly passes through the reflow oven. The virtual modelling tools facilitate the modelling and simulation of the lead-free reflow process, which provide more data and clear visualization on the particular process. Findings With the growing trend of computer power and software capability, the multidisciplinary simulation, such as the temperature and thermal stress of lead-free SMCs, under the influenced of a specific process atmosphere can be provided. A simulation modelling technique for the thermal response and flow field prediction of a reflow process is cost-effective and has greatly helped the engineer to eliminate guesswork. Besides, simulated-based optimization methods of the reflow process have gained popularity because of them being economical and have reduced time-consumption, and these provide more information compared to the experimental hardware. The advantages and disadvantages of the simulation modelling in the reflow soldering process are also briefly discussed. Practical implications This literature review provides the engineers and researchers with a profound understanding of the thermo-mechanical challenges of reflowed lead-free solder joints in SMCs and the challenges of simulation modelling in the reflow process. Originality/value The unique challenges in solder joint reliability, and direction of future research in reflow process were identified to clarify the solutions to solve lead-free reliability issues in the electronics manufacturing industry.


2014 ◽  
Vol 26 (1) ◽  
pp. 22-26 ◽  
Author(s):  
Krystian Jankowski ◽  
Artur Wymyslowski ◽  
Didier Chicot

Purpose – The aim of this work is the use of specially designed, authoring device to evaluate the strength of solder alloys commonly used in all kinds of electronic and electrical devices that are used in various fields of economic and industrial development to shorten the testing period. By obtaining answers to pervade science questions on how to properly investigate the reliability of solder joints can increase lifespan (uptime) of all electronic devices, and especially those that are used in the process submitted severe external conditions (dust, humidity air, heat, mechanical stress). Design/methodology/approach – The basic demand for performing the experimental tests is to measure small displacements (order of fractions of micrometers or of single microns) occurring within the sample. The analysis of the displacement values in various environmental conditions (temperature, humidity, current flow) allows estimating how a given material behaves also in a longer time, under normal operating conditions. Unlike a commonly used method, based on measuring the time-to-failure, at which the item is damaged due to accelerated aging, a behaviour of the sample is being tested for the selected duration time and the given loading conditions. Findings – The theoretical analysis and performed numerical simulations of ATC tests based on developed failure and reliability investigation system (FRIS) imply proposed here combined loading approach a promising and affective method for accelerated reliability tests. Both indentation and FRIS techniques by numerous possibilities of loading conditions seem to be appropriate in order to study the creep and fatigue behaviour. That kind of behaviours can be used by different models which characterize separately the mechanical properties under creep or fatigue tests. In case of creep mode, the displacement is expressed as a function of time where different parameters can be used to represent the creep sensibility. Originality/value – New device can provide both creep and fatigue phenomena simultaneously and perform tests in digital controlled environmental conditions. That approach enables faster method for testing reliability of solder joints.


2015 ◽  
Vol 27 (1) ◽  
pp. 31-44 ◽  
Author(s):  
M.S. Abdul Aziz ◽  
M.Z. Abdullah ◽  
C.Y. Khor

Purpose – This paper aims to investigate the thermal fluid–structure interactions (FSIs) of printed circuit boards (PCBs) at different component configurations during the wave soldering process and experimental validation. Design/methodology/approach – The thermally induced displacement and stress on the PCB and its components are the foci of this study. Finite volume solver FLUENT and finite element solver ABAQUS, coupled with a mesh-based parallel code coupling interface, were utilized to perform the analysis. A sound card PCB (138 × 85 × 1.5 mm3), consisting of a transistor, diode, capacitor, connector and integrated circuit package, was built and meshed by using computational fluid dynamics pre-processing software. The volume of fluid technique with the second-order upwind scheme was applied to track the molten solder. C language was utilized to write the user-defined functions of the thermal profile. The structural solver analyzed the temperature distribution, displacement and stress of the PCB and its components. The predicted temperature was validated by the experimental results. Findings – Different PCB component configurations resulted in different temperature distributions, thermally induced stresses and displacements to the PCB and its components. Results show that PCB component configurations significantly influence the PCB and yield unfavorable deformation and stress. Practical implications – This study provides PCB designers with a profound understanding of the thermal FSI phenomenon of the process control during wave soldering in the microelectronics industry. Originality/value – This study provides useful guidelines and references by extending the understanding on the thermal FSI behavior of molten solder for PCBs. This study also explores the behaviors and influences of PCB components at different configurations during the wave soldering process.


Circuit World ◽  
2018 ◽  
Vol 44 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Petr Veselý ◽  
Eva Horynová ◽  
Jiří Starý ◽  
David Bušek ◽  
Karel Dušek ◽  
...  

Purpose The purpose of this paper is to increase the reliability of manufactured electronics and to reveal reliability significant factors. The experiments were focused especially on the influence of the reflow oven parameters presented by a heating factor. Design/methodology/approach The shear strength of the surface mount device (SMD) resistors and their joint resistance were analyzed. The resistors were assembled with two Sn/Ag/Cu-based and one Bi-based solder pastes, and the analysis was done for several values of the heating factor and before and after isothermal aging. The measurement of thickness of intermetallic compounds was conducted on the micro-sections of the solder joints. Findings The shear strength of solder joints based on the Sn/Ag/Cu-based solder alloy started to decline after the heating factor reached the value of 500 s · K, whereas the shear strength of the solder alloy based on the Bi alloy (in the measured range) always increased with an increase in the heating factor. Also, the Bi-based solder joints showed shear strength increase after isothermal aging in contrast to Sn/Ag/Cu-based solder joints, which showed shear strength decrease. Originality/value The interpretation of the results of such a comprehensive measurement leads to a better understanding of the mutual relation between reliability and other technological parameters such as solder alloy type, surface finish and parameters of the soldering process.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xu Han ◽  
Xiaoyan Li ◽  
Peng Yao

Purpose This study aims to investigate the effect of ultrasound on interfacial microstructures and growth kinetics of intermetallic compounds (IMCs) at different temperatures. Design/methodology/approach To investigate the effect of ultrasound on IMCs growth quantitatively, the cross-sectional area of IMCs layers over a confirmed length was obtained for calculating the thickness of the IMCs layer. Findings The generation of dimensional difference in normal direction between Cu6Sn5 and its adjacent Cu6Sn5, formation of bossed Cu6Sn5 and non-interfacial Cu6Sn5 in ultrasonic solder joints made the interfacial Cu6Sn5 layer present a non-scallop-like morphology different from that of traditional solder joints. At 260°C and 290°C, the Cu3Sn layer presented a wave-like shape. In contrast, at 320°C, the Cu3Sn in ultrasonic solder joints consisted of non-interfacial Cu3Sn and interfacial Cu3Sn with a branch-like shape. The Cu6Sn5/Cu3Sn boundary and Cu3Sn/Cu interface presented a sawtooth-like shape under the effect of ultrasound. The predominant mechanism of ultrasonic-assisted growth of Cu6Sn5 growth at 260°C, 290°C and 320°C involved the grain boundary diffusion accompanied by grain coarsening. The Cu3Sn growth was controlled by volume diffusion during the ultrasonic soldering process at 260°C and 290°C. The diffusion mechanism of Cu3Sn growth transformed to grain boundary diffusion accompanied by grain coarsening when the ultrasonic soldering temperature was increased to 320°C. Originality/value The microstructural evolution and growth kinetics of IMCs in ultrasonically prepared ultrasonic solder joints at different temperatures have rarely been reported in previous studies. In this study, the effect of ultrasound on microstructural evolution and growth kinetics of IMCs was systematically investigated.


2019 ◽  
Vol 31 (3) ◽  
pp. 146-156 ◽  
Author(s):  
Balázs Illés ◽  
Attila Géczy ◽  
Bálint Medgyes ◽  
Gábor Harsányi

Purpose This paper aims to present a review of the recent developments in vapour phase soldering (VPS) technology. This study focuses on the following topics: recent developments of the technology, i.e. soft and vacuum VPS; measurement and characterization methods of vapour space, i.e. temperature and pressure; numerical simulation of the VPS soldering process, i.e. condensate layer and solder joint formation; and quality and reliability studies of the solder joints prepared by VPS, i.e. void content and microstructure of the solder joints. Design/methodology/approach This study was written according to the results of a wide literature review about the substantial previous works in the past decade and according to the authors’ own results. Findings Up to now, a part of the electronics industry believes that the reflow soldering with VPS method is a significant alternative of convection and infrared technologies. The summarized results of the field in this study support this idea. Research limitations/implications This literature review provides engineers and researchers with understanding of the limitations and application possibilities of the VPS technology and the current challenges in soldering technology. Originality/value This paper summarizes the most important advantages and disadvantages of VPS technology compared to the other reflow soldering methods, as well as points out the necessary further developments and possible research directions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xu Han ◽  
Xiaoyan Li ◽  
Peng Yao ◽  
Dalong Chen

Purpose This study aims to investigate the interfacial microstructures of ultrasonic-assisted solder joints at different soldering times. Design/methodology/approach Solder joints with different microstructures are obtained by ultrasonic-assisted soldering. To analyze the effect of ultrasounds on Cu6Sn5 growth during the solid–liquid reaction stage, the interconnection heights of solder joints are increased from 30 to 50 μm. Findings Scallop-like Cu6Sn5 nucleate and grow along the Cu6Sn5/Cu3Sn interface under the traditional soldering process. By comparison, some Cu6Sn5 are formed at Cu6Sn5/Cu3Sn interface and some Cu6Sn5 are randomly distributed in Sn when ultrasonic-assisted soldering process is used. The reason for the formation of non-interfacial Cu6Sn5 has to do with the shock waves and micro-jets produced by ultrasonic treatment, which leads to separation of some Cu6Sn5 from the interfacial Cu6Sn5 to form non-interfacial Cu6Sn5. The local high pressure generated by the ultrasounds promotes the heterogeneous nucleation and growth of Cu6Sn5. Also, some branch-like Cu3Sn formed at Cu6Sn5/Cu3Sn interface render the interfacial Cu3Sn in ultrasonic-assisted solder joints present a different morphology from the wave-like or planar-like Cu3Sn in conventional soldering joints. Meanwhile, some non-interfacial Cu3Sn are present in non-interfacial Cu6Sn5 due to reaction of Cu atoms in liquid Sn with non-interfacial Cu6Sn5 to form non-interfacial Cu3Sn. Overall, full Cu3Sn solder joints are obtained at ultrasonic times of 60 s. Originality/value The obtained microstructure evolutions of ultrasonic-assisted solder joints in this paper are different from those reported in previous studies. Based on these differences, the effects of ultrasounds on the formation of non-interfacial IMCs and growth of interfacial IMCs are systematically analyzed by comparing with the traditional soldering process.


Sign in / Sign up

Export Citation Format

Share Document