Quartz fiberguides for laser and medical applications, obtained by microwave plasma-chemical deposition from gas phase

Author(s):  
V.A. Babenko ◽  
V.V. Grigorjantz ◽  
L.Yu. Kochmarev ◽  
I.P. Shilov
2021 ◽  
Vol 0 (4) ◽  
pp. 30-34
Author(s):  
M.V. POTAPOVA ◽  
◽  
M.YU. MAKHMUD-AKHUNOV ◽  
V.N. GOLOVANOV ◽  
K.E. IMESHEV ◽  
...  

The surface quality of the metallized contact pads on the crystal plays an important role in the production of semiconductor devices. This paper presents experimental studies of the effect of a protective passivation film of silicon oxide on the surface structure of aluminum metallization in the field of forming contact pads. Plasma chemical deposition of passivation layer SiO2 from gas phase (PECVD method) was carried out on prepared samples of silicon with aluminum metallization using a high-frequency power source with a frequency of 13.56 MHz. After that, chemical etching of precipitated silicon oxide was carried out to simulate the process of forming contact areas of semiconductor device crystals. The resistance of the metallization surface to plasma processes was studied by raster electron microscopy. It is shown that as a result of the process cycle, defects of the dislocation type are generated in the applied film Al. The nature of the observed defects has been found to be different. The revealed large square-shaped pits with a size of ~ 1 μm at the places where dislocations come to the surface are of a single nature and appear independently of the processes of applying passivation coatings, which is determined by the orienting action of a single-crystal substrate having some low dislocation density. While the second type of defects, shown by the presence of etching pits measuring ~ 100-300 nm, is characterized by a higher surface density. Moreover, the exclusion of the passivation process with silicon oxide did not lead to the appearance of this type of defects, which determined their nature associated with the ion bombardment of the Al layer during the plasma chemical deposition of silicon oxide from the gas phase. It is also shown that a feature of this type of defects is their disorientation both with respect to the first type of defects and with respect to each other. Detection of the structure of the metallization layers was carried out by X-ray diffraction, the results of which show the polycrystallinity of the formed aluminum metallization. The preferred orientation of the aluminum film corresponds to the substrate Si (111).


2019 ◽  
Vol 1328 ◽  
pp. 012011
Author(s):  
O V Vishnevskaya ◽  
E F Voznesensky ◽  
R G Ibragimov ◽  
V V Vishnevsky ◽  
A V Ostrovskaya ◽  
...  

2016 ◽  
Vol 3 (10) ◽  
pp. 106205 ◽  
Author(s):  
Srinivasu Kunuku ◽  
Yen-Chun Chen ◽  
Chien-Jui Yeh ◽  
Wen-Hao Chang ◽  
Divinah Manoharan ◽  
...  

Author(s):  
Cyril Popov ◽  
Miroslav Jelínek ◽  
S. Boycheva ◽  
V. Vorlícek ◽  
Wilhelm Kulisch

Nanocrystalline diamond (NCD) films have been prepared by microwave plasma chemical vapor deposition (MWCVD) from methane/nitrogen mixtures, and the influence of the gas phase composition on the basic properties of the films (composition, morphology, topography, crystallinity and bonding structure) was investigated.


Shinku ◽  
1997 ◽  
Vol 40 (8) ◽  
pp. 660-663
Author(s):  
Hideo OKAYAMA ◽  
Tsukasa KUBO ◽  
Noritaka MOCHIZUKI ◽  
Akiyoshi NAGATA ◽  
Hiromu ISA

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 888
Author(s):  
Pengfei Zhang ◽  
Weidong Chen ◽  
Longhui Zhang ◽  
Shi He ◽  
Hongxing Wang ◽  
...  

In this paper, we successfully synthesized homoepitaxial diamond with high quality and atomically flat surface by microwave plasma chemical vapor deposition. The sample presents a growth rate of 3 μm/h, the lowest RMS of 0.573 nm, and the narrowest XRD FWHM of 31.32 arcsec. An effect analysis was also applied to discuss the influence of methane concentration on the diamond substrates.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1004 ◽  
Author(s):  
J. Barbara Nebe ◽  
Henrike Rebl ◽  
Michael Schlosser ◽  
Susanne Staehlke ◽  
Martina Gruening ◽  
...  

Biomaterials should be bioactive in stimulating the surrounding tissue to accelerate the ingrowth of permanent implants. Chemical and topographical features of the biomaterial surface affect cell physiology at the interface. A frequently asked question is whether the chemistry or the topography dominates the cell-material interaction. Recently, we demonstrated that a plasma-chemical modification using allylamine as a precursor was able to boost not only cell attachment and cell migration, but also intracellular signaling in vital cells. This microwave plasma process generated a homogenous nanolayer with randomly distributed, positively charged amino groups. In contrast, the surface of the human osteoblast is negatively charged at −15 mV due to its hyaluronan coat. As a consequence, we assumed that positive charges at the material surface—provoking electrostatic interaction forces—are attractive for the first cell encounter. This plasma-chemical nanocoating can be used for several biomaterials in orthopedic and dental implantology like titanium, titanium alloys, calcium phosphate scaffolds, and polylactide fiber meshes produced by electrospinning. In this regard, we wanted to ascertain whether plasma polymerized allylamine (PPAAm) is also suitable for increasing the attractiveness of a ceramic surface for dental implants using Yttria-stabilized tetragonal zirconia.


Sign in / Sign up

Export Citation Format

Share Document